Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564326

RESUMEN

Optical thin films with high-reflectivity (HR) are essential for applications in quantum precision measurements. In this work, we propose a coating technique based on reactive magnetron sputtering with RF-induced substrate bias to fabricate HR-optical thin films. First, atomically flat SiO2 and Ta2O5 layers have been demonstrated due to the assistance of radio-frequency plasma during the coating process. Second, a distributed Bragg reflector (DBR) mirror with an HR of ∼99.999 328% centered at 1397 nm has been realized. The DBR structure is air-H{LH}19-substrate, in which the L and H denote a single layer of SiO2 with a thickness of 237.8 nm and a single layer of Ta2O5 with a thickness of 171.6 nm, respectively. This novel coating method would facilitate the development of HR reflectors and promote their wide applications in precision measurements.

2.
Phys Rev Lett ; 132(8): 083601, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38457704

RESUMEN

Quantum non-Gaussianity, a more potent and highly useful form of nonclassicality, excludes all convex mixtures of Gaussian states and Gaussian parametric processes generating them. Here, for the first time, we conclusively test quantum non-Gaussian coincidences of entangled photon pairs with the Clauser-Horne-Shimony-Holt-Bell factor S=2.328±0.004 from a single quantum dot with a depth up to 0.94±0.02 dB. Such deterministically generated photon pairs fundamentally overcome parametric processes by reducing crucial multiphoton errors. For the quantum non-Gaussian depth of the unheralded (heralded) single-photon state, we achieve the value of 8.08±0.05 dB (19.06±0.29 dB). Our Letter experimentally certifies the exclusive quantum non-Gaussianity properties highly relevant for optical sensing, communication, and computation.

3.
Phys Rev Lett ; 131(21): 210603, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072603

RESUMEN

Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers to achieve robust noise resistance. To achieve universality, magic states preparation is a commonly approach for introducing non-Clifford gates. Here, we present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code, and further experimentally implement it on the Zuchongzhi 2.1 superconducting quantum processor. An average of 0.8983±0.0002 logical fidelity at different logical states with distance three is achieved, taking into account both state preparation and measurement errors. In particular, the logical magic states |A^{π/4}⟩_{L}, |H⟩_{L}, and |T⟩_{L} are prepared nondestructively with logical fidelities of 0.8771±0.0009, 0.9090±0.0009, and 0.8890±0.0010, respectively, which are higher than the state distillation protocol threshold, 0.859 (for H-type magic state) and 0.827 (for T-type magic state). Our work provides a viable and efficient avenue for generating high-fidelity raw logical magic states, which is essential for realizing non-Clifford logical gates in the surface code.

4.
Nature ; 619(7971): 738-742, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438533

RESUMEN

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

5.
Opt Lett ; 48(13): 3507-3510, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390167

RESUMEN

The refractive index is a critical parameter in optical and photonic device design. However, due to the lack of available data, precise designs of devices working in low temperatures are still frequently limited. In this work, we have built a homemade spectroscopic ellipsometer (SE) and measured the refractive index of GaAs at a matrix of temperatures (4 K < T < 295 K) and photon wavelengths (700 nm < λ < 1000 nm) with a system error of ∼0.04. We verified the credibility of the SE results by comparing them with afore-reported data at room temperature and with higher precision values measured by vertical GaAs cavity at cryogenic temperatures. This work makes up for the lack of the near-infrared refractive index of GaAs at cryogenic temperatures and provides accurate reference data for semiconductor device design and fabrication.


Asunto(s)
Fotones , Refractometría , Temperatura , Semiconductores
6.
Sci Bull (Beijing) ; 68(8): 807-812, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36990872

RESUMEN

Semiconductor quantum dots, as promising solid-state platform, have exhibited deterministic photon pair generation with high polarization entanglement fidelity for quantum information applications. However, due to temporal correlation from inherently cascaded emission, photon indistinguishability is limited, which restricts their potential scalability to multi-photon experiments. Here, by utilizing quantum interferences to decouple polarization entanglement from temporal correlation, we improve four-photon Greenberger-Horne-Zeilinger (GHZ) state entanglement fidelity from (58.7±2.2)% to (75.5±2.0)%. Our work paves the way to realize scalable and high-quality multi-photon states from quantum dots.

7.
Sci Bull (Beijing) ; 67(3): 240-245, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36546072

RESUMEN

To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1, which has 66 qubits in a two-dimensional array in a tunable coupler architecture. The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%. The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling, with a system scale of up to 60 qubits and 24 cycles, and fidelity of FXEB=(3.66±0.345)×10-4. The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore [Nature 574, 505 (2019)] in the classic simulation, and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0 [arXiv:2106.14734 (2021)]. The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years (about 4.8×104 years), while Zuchongzhi 2.1 only takes about 4.2 h, thereby significantly enhancing the quantum computational advantage.

8.
Phys Rev Lett ; 129(3): 030501, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905349

RESUMEN

Quantum error correction is a critical technique for transitioning from noisy intermediate-scale quantum devices to fully fledged quantum computers. The surface code, which has a high threshold error rate, is the leading quantum error correction code for two-dimensional grid architecture. So far, the repeated error correction capability of the surface code has not been realized experimentally. Here, we experimentally implement an error-correcting surface code, the distance-three surface code which consists of 17 qubits, on the Zuchongzhi 2.1 superconducting quantum processor. By executing several consecutive error correction cycles, the logical error can be significantly reduced after applying corrections, achieving the repeated error correction of surface code for the first time. This experiment represents a fully functional instance of an error-correcting surface code, providing a key step on the path towards scalable fault-tolerant quantum computing.

9.
Phys Rev Lett ; 127(18): 180501, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34767433

RESUMEN

Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional programmable superconducting quantum processor, Zuchongzhi, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up to a system size of 56 qubits and 20 cycles. The computational cost of the classical simulation of this task is estimated to be 2-3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor [Nature 574, 505 (2019)NATUAS0028-083610.1038/s41586-019-1666-5. We estimate that the sampling task finished by Zuchongzhi in about 1.2 h will take the most powerful supercomputer at least 8 yr. Our work establishes an unambiguous quantum computational advantage that is infeasible for classical computation in a reasonable amount of time. The high-precision and programmable quantum computing platform opens a new door to explore novel many-body phenomena and implement complex quantum algorithms.

10.
Nanotechnology ; 21(29): 295304, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20601753

RESUMEN

Atomically-flat surfaces are obtained after thin GaAsSb buffer layer growth on GaAs substrates with regular-distributed nano-holes formed after oxide desorption of the local atomic-force-microscopy anode oxidation. Different from the samples with GaAsSb buffer layers, increasing surface root-mean-square roughness is observed for the GaAs-buffered samples with increasing GaAs buffer layer thickness. The phenomenon is attributed to the enhanced adatom migration resulting from the incorporation of Sb atoms. By using the substrates with nano-holes after buffer layer growth, site-controlled self-assembled InAs quantum dots (QDs) are observed with the deposition of a below-critical-thickness InAs coverage of 1.3 monolayer (ML).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...