Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 125(6): 1767-1778, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30335580

RESUMEN

Carnosine and anserine are dipeptides synthesized from histidine and ß-alanine by carnosine synthase (ATPGD1). These dipeptides, present in high concentration in the skeletal muscle, form conjugates with lipid peroxidation products such as 4-hydroxy trans-2-nonenal (HNE). Although skeletal muscle levels of these dipeptides could be elevated by feeding ß-alanine, it is unclear how these dipeptides and their conjugates are affected by exercise training with or without ß-alanine supplementation. We recruited 20 physically active men, who were allocated to either ß-alanine or placebo-feeding group matched for peak oxygen consumption, lactate threshold, and maximal power. Participants completed 2 wk of a conditioning phase followed by 1 wk of exercise training, a single session of high-intensity interval training (HIIT), followed by 6 wk of HIIT. Analysis of muscle biopsies showed that the levels of carnosine and ATPGD1 expression were increased after CPET and decreased following a single session and 6 wk of HIIT. Expression of ATPGD1 and levels of carnosine were increased upon ß-alanine-feeding after CPET, whereas ATPGD1 expression decreased following a single session of HIIT. The expression of fiber type markers myosin heavy chain I and IIa remained unchanged after CPET. Levels of carnosine, anserine, carnosine-HNE, carnosine-propanal, and carnosine-propanol were further increased after 9 wk of ß-alanine supplementation and exercise training but remained unchanged in the placebo-fed group. These results suggest that carnosine levels and ATPGD1 expression fluctuates with different phases of training. Enhancing carnosine levels by ß-alanine feeding could facilitate the detoxification of lipid peroxidation products in the human skeletal muscle.NEW & NOTEWORTHY Carnosine synthase expression and carnosine levels are altered in the human skeletal muscle during different phases of training. During high-intensity interval training, ß-alanine feeding promotes detoxification of lipid peroxidation products and increases anserine levels in the skeletal muscle.

2.
J Physiol ; 594(17): 4849-63, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27062388

RESUMEN

KEY POINTS: Using recombinant DNA technology, the present study provides the first strong and direct evidence indicating that ß-alanine is an efficient substrate for the mammalian transaminating enzymes 4-aminobutyrate-2-oxoglutarate transaminase and alanine-glyoxylate transaminase. The concentration of carnosine and anserine in murine skeletal and heart muscle depends on circulating availability of ß-alanine, which is in turn controlled by degradation of ß-alanine in liver and kidney. Chronic oral ß-alanine supplementation is a popular ergogenic strategy in sports because it can increase the intracellular carnosine concentration and subsequently improve the performance of high-intensity exercises. The present study can partly explain why the ß-alanine supplementation protocol is so inefficient, by demonstrating that exogenous ß-alanine can be effectively routed toward oxidation. ABSTRACT: The metabolic fate of orally ingested ß-alanine is largely unknown. Chronic ß-alanine supplementation is becoming increasingly popular for improving high-intensity exercise performance because it is the rate-limiting precursor of the dipeptide carnosine (ß-alanyl-l-histidine) in muscle. However, only a small fraction (3-6%) of the ingested ß-alanine is used for carnosine synthesis. Thus, the present study aimed to investigate the putative contribution of two ß-alanine transamination enzymes, namely 4-aminobutyrate-2-oxoglutarate transaminase (GABA-T) and alanine-glyoxylate transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue anserine. We found that, when transfected into HEK293T cells, recombinant mouse and human GABA-T and AGXT2 are able to transaminate ß-alanine efficiently. The reaction catalysed by GABA-T is inhibited by vigabatrin, whereas both GABA-T and AGXT2 activity is inhibited by aminooxyacetic acid (AOA). Both GABA-T and AGXT2 are highly expressed in the mouse liver and kidney and the administration of the inhibitors effectively reduced their enzyme activity in liver (GABA-T for vigabatrin; GABA-T and AGXT2 for AOA). In vivo, injection of AOA in C57BL/6 mice placed on ß-alanine (0.1% w/v in drinking water) for 2 weeks lead to a 3-fold increase in circulating ß-alanine levels and to significantly higher levels of carnosine and anserine in skeletal muscle and heart. By contrast, specific inhibition of GABA-T by vigabatrin did not affect carnosine and anserine levels in either tissue. Collectively, these data demonstrate that homeostasis of carnosine and anserine in mammalian skeletal muscle and heart is controlled by circulating ß-alanine levels, which are suppressed by hepatic and renal ß-alanine transamination upon oral ß-alanine intake.


Asunto(s)
Anserina/metabolismo , Carnosina/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Transaminasas/metabolismo , beta-Alanina/metabolismo , Ácido Aminooxiacético/farmacología , Animales , Encéfalo/metabolismo , Inhibidores Enzimáticos/farmacología , GABAérgicos/farmacología , Células HEK293 , Homeostasis , Humanos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Transaminasas/antagonistas & inhibidores , Transaminasas/genética , Vigabatrin/farmacología , beta-Alanina/sangre , beta-Alanina/orina
3.
Front Nutr ; 2: 13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25988141

RESUMEN

PURPOSE: Beta-alanine (BA) supplementation has been shown to augment muscle carnosine concentration, thereby promoting high-intensity (HI) exercise performance. Trained muscles of athletes have a higher increase in carnosine concentration after BA supplementation compared to untrained muscles, but it remains to be determined whether this is due to an accumulation of acute exercise effects or to chronic adaptations from prior training. The aim of the present study was to investigate whether high-volume (HV) and/or HI exercise can improve BA-induced carnosine loading in untrained subjects. METHODS: All participants (n = 28) were supplemented with 6.4 g/day of BA for 23 days. The subjects were allocated to a control group, HV, or HI training group. During the BA supplementation period, the training groups performed nine exercise sessions, consisting of either 75-90 min continuous cycling at 35-45% Wmax (HV) or 3 to 5 repeats of 30 s cycling at 165% Wmax with 4 min recovery (HI). Carnosine content was measured in soleus and gastrocnemius medialis by proton magnetic resonance spectroscopy. RESULTS: There was no difference in absolute increase in carnosine content between the groups in soleus and gastrocnemius muscle. For the average muscle carnosine content, a higher absolute increase was found in HV (+2.95 mM; P = 0.046) and HI (+3.26 mM; P = 0.028) group compared to the control group (+1.91 mM). However, there was no additional difference between the HV and HI training group. CONCLUSION: HV and HI exercise training showed no significant difference on BA-induced muscle carnosine loading in soleus and gastrocnemius muscle. It can be suggested that there can be a small cumulative effect of exercise on BA supplementation efficiency, although differences did not reach significance on individual muscle level.

4.
Int J Sport Nutr Exerc Metab ; 24(3): 315-24, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24457999

RESUMEN

Muscle carnosine loading through chronic oral beta-alanine supplementation has been shown to be effective for short-duration, high-intensity exercise. This randomized, placebo-controlled study explored whether the ergogenic effect of beta-alanine supplementation is also present for longer duration exercise. Subjects (27 well-trained cyclists/triathletes) were supplemented with either beta-alanine or placebo (6.4 g/day) for 6 weeks. Time to completion and physiological variables for a 1-hr cycling time-trial were compared between preand postsupplementation. Muscle carnosine concentration was also assessed via proton magnetic resonance spectroscopy before and after supplementation. Following beta-alanine supplementation, muscle carnosine concentration was increased by 143 ± 151% (mean ± SD; p < .001) in the gastrocnemius and 161 ± 56% (p < .001) in the soleus. Postsupplementation time trial performance was significantly slower in the placebo group (60.6 ± 4.4-63.0 ± 5.4 min; p < .01) and trended toward a slower performance following beta-alanine supplementation (59.8 ± 2.8-61.7 ± 3.0 min; p = .069). We found an increase in lactate/proton concentration ratio following beta-alanine supplementation during the time-trial (209.0 ± 44.0 (beta-alanine) vs. 161.9 ± 54.4 (placebo); p < .05), indicating that a similar lactate concentration was accompanied by a lower degree of systemic acidosis, even though this acidosis was quite moderate (pH ranging from 7.30 to 7.40). In conclusion, chronic beta-alanine supplementation in well-trained cyclists had a very pronounced effect on muscle carnosine concentration and a moderate attenuating effect on the acidosis associated with lactate accumulation, yet without affecting 1-h time-trial performance under laboratory conditions.


Asunto(s)
Rendimiento Atlético/fisiología , Ciclismo/fisiología , Carnosina/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético , Resistencia Física/efectos de los fármacos , beta-Alanina/farmacología , Acidosis/prevención & control , Suplementos Dietéticos , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/sangre , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Esfuerzo Físico/efectos de los fármacos
5.
Nutrients ; 4(10): 1441-53, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23201763

RESUMEN

Although some laboratory-based studies show an ergogenic effect with beta-alanine supplementation, there is a lack of field-based research in training and competition settings. Elite/Sub-elite swimmers (n = 23 males and 18 females, age = 21.7 ± 2.8 years; mean ± SD) were supplemented with either beta-alanine (4 weeks loading phase of 4.8 g/day and 3.2 g/day thereafter) or placebo for 10 weeks. Competition performance times were log-transformed, then evaluated before (National Championships) and after (international or national selection meet) supplementation. Swimmers also completed three standardized training sets at baseline, 4 and 10 weeks of supplementation. Capillary blood was analyzed for pH, bicarbonate and lactate concentration in both competition and training. There was an unclear effect (0.4%; ± 0.8%, mean, ± 90% confidence limits) of beta-alanine on competition performance compared to placebo with no meaningful changes in blood chemistry. While there was a transient improvement on training performance after 4 weeks with beta-alanine (-1.3%; ± 1.0%), there was an unclear effect at ten weeks (-0.2%; ± 1.5%) and no meaningful changes in blood chemistry. Beta-alanine supplementation appears to have minimal effect on swimming performance in non-laboratory controlled real-world training and competition settings.


Asunto(s)
Rendimiento Atlético , Estimulantes del Sistema Nervioso Central/farmacología , Conducta Competitiva/efectos de los fármacos , Suplementos Dietéticos , Educación y Entrenamiento Físico , Natación/fisiología , beta-Alanina/farmacología , Adulto , Atletas , Análisis Químico de la Sangre , Método Doble Ciego , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...