Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 25868, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27167722

RESUMEN

To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction.


Asunto(s)
Antozoos/metabolismo , Proteínas Luminiscentes/genética , Oocitos/metabolismo , Animales , Antozoos/genética , Antozoos/fisiología , Clonación Molecular , Femenino , Peróxido de Hidrógeno/metabolismo , Proteínas Luminiscentes/metabolismo , Oogénesis , Estrés Oxidativo , Proteína Fluorescente Roja
2.
Gen Comp Endocrinol ; 228: 95-104, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26868454

RESUMEN

Sex steroids play a fundamental role not only in reproduction but also in various other biological processes in vertebrates. Although the presence of sex steroids has been confirmed in cnidarians (e.g., coral, sea anemone, jellyfish, and hydra), which are basal metazoans, only a few studies to date have characterized steroidogenesis-related genes in cnidarians. Based on a transcriptomic analysis of the stony coral Euphyllia ancora, we identified the steroidogenic enzyme 17ß-hydroxysteroid dehydrogenase type 14 (17beta-hsd 14), an oxidative enzyme that catalyzes the NAD(+)-dependent inactivation of estrogen/androgen (estradiol to estrone and testosterone to androstenedione) in mammals. Phylogenetic analysis showed that E. ancora 17beta-Hsd 14 (Ea17beta-Hsd 14) clusters with other animal 17beta-HSD 14s but not with other members of the 17beta-HSD family. Subsequent quantitative RT-PCR analysis revealed a lack of correlation of Ea17beta-hsd 14 transcript levels with the coral's reproductive cycle. In addition, Ea17beta-hsd 14 transcript and protein were detected in all tissues examined, such as the tentacles, mesenterial filaments, and gonads, at similar levels in both sexes, as determined by quantitative RT-PCR analysis and Western blotting with an anti-Ea17beta-Hsd 14 antibody. Immunohistochemical analysis revealed that Ea17beta-Hsd 14 is mainly distributed in the endodermal regions of the polyps, but the protein was also observed in all tissues examined. These results suggest that Ea17beta-Hsd 14 is involved in important functions that commonly occur in endodermal cells or has multiple functions in different tissues. Our data provide information for comparison with advanced animals as well as insight into the evolution of steroidogenesis-related genes in metazoans.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/metabolismo , Antozoos/metabolismo , Reproducción/fisiología , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/inmunología , Andrógenos/metabolismo , Androstenodiona/metabolismo , Animales , Antozoos/genética , Antozoos/crecimiento & desarrollo , Formación de Anticuerpos , Western Blotting , Clonación Molecular , Estradiol/metabolismo , Femenino , Cobayas , Técnicas para Inmunoenzimas , Masculino , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testosterona/metabolismo
3.
Biol Reprod ; 94(2): 40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26740592

RESUMEN

Transcription factors encoded by the Dmrt gene family regulate multiple aspects of animal reproduction. Most studies investigating the Dmrt gene family were conducted in model organisms from bilateral species, with a particular emphasis on gene function in male sex determination. It is still unclear whether the E. ancora Dmrt (EaDmrt) genes found in basal metazoans such as cnidarians share similar characteristics with orthologs in other metazoans. In this study, seven full Dmrt gene transcript sequences for a gonochoric coral, Euphyllia ancora (phylum: Cnidaria; class: Anthozoa), were obtained through transcriptome data mining, RT-PCR analysis, rapid amplification of cDNA ends, and sequencing. These EaDmrts were subjected to quantitative assays measuring temporal and tissue-specific expression. Results demonstrated a unique gene expression pattern for EaDmrtE, which is enriched in female germ cells during the spawning season. Based on the phylogenetic analyses performed across the homologous Dmrt genes in metazoans, we found that the female-specific EaDmrtE gene is not related to the DM1 gene of Acropora spp. coral nor to Dmrt1 of vertebrates, which are involved in sexual reproduction, especially in sex determination (vertebrate Dmrt1). Additionally, high levels of EaDmrtE transcripts detected in unfertilized mature eggs are retained in newly formed zygotes but decrease during embryonic development. We suggest that the newly discovered gene may play a role in oogenesis and early embryogenesis as a maternal factor in corals. Therefore, the sexual reproduction-associated Dmrt gene(s) should have arisen in cnidarians and might have evolved multiple times in metazoans.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Antozoos/genética , Células Germinativas/metabolismo , Tionucleósidos/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Antozoos/metabolismo , Femenino , Filogenia , Reproducción/fisiología , Tionucleósidos/metabolismo
4.
Endocrinology ; 154(9): 3447-59, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23766130

RESUMEN

Vitellogenin (Vg) is a major yolk protein precursor in numerous oviparous animals. Numerous studies in bilateral oviparous animals have shown that Vg sequences are conserved across taxa and that Vgs are synthesized by somatic-cell lineages, transported to and accumulated in oocytes, and eventually used for supporting embryogenesis. In nonbilateral animals (Polifera, Cnidaria, and Ctenophora), which are regarded as evolutionarily primitive, although Vg cDNA has been identified in 2 coral species from Cnidaria, relatively little is known about the characteristics of yolk formation in their bodies. To address this issue, we identified and characterized 2 cDNA encoding yolk proteins, Vg and egg protein (Ep), in the stony coral Euphyllia ancora. RT-PCR analysis revealed that expression levels of both Vg and Ep increased in the female colonies as coral approached the spawning season. In addition, high levels of both Vg and Ep transcripts were detected in the putative ovarian tissue, as determined by tissue distribution analysis. Further analyses using mRNA in situ hybridization and immunohistochemistry determined that, within the putative ovarian tissue, these yolk proteins are synthesized in the mesenterial somatic cells but not in oocytes themselves. Furthermore, Vg proteins that accumulated in eggs were most likely consumed during the coral embryonic development, as assessed by immunoblotting. The characteristics of Vg that we identified in corals were somewhat similar to those of Vg in bilaterian oviparous animals, raising the hypothesis that such characteristics were likely present in the oogenesis of some common ancestor prior to divergence of the cnidarian and bilaterian lineages.


Asunto(s)
Antozoos/embriología , Proteínas del Huevo/biosíntesis , Yema de Huevo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vitelogénesis , Animales , Antozoos/metabolismo , Antozoos/ultraestructura , Arrecifes de Coral , Ectogénesis , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Yema de Huevo/ultraestructura , Femenino , Inmunohistoquímica , Hibridación in Situ , Masculino , Especificidad de Órganos , Océano Pacífico , ARN Mensajero/metabolismo , Estaciones del Año , Caracteres Sexuales , Taiwán , Vitelogeninas/biosíntesis , Vitelogeninas/genética , Vitelogeninas/metabolismo
5.
PLoS One ; 7(7): e41569, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848529

RESUMEN

Sexual reproduction of scleractinian coral is among the most important means of establishing coral populations. However, thus far, little is known about the mechanisms underlying coral gametogenesis. To better understand coral germ cell development, we performed a histological analysis of gametogenesis in Euphyllia ancora and characterized the coral homolog of the Drosophila germline marker gene vasa. The histological analysis revealed that E. ancora gametogenesis occurs in the mesenterial mesoglea between the mesenterial filaments and the retractor muscle bands. The development of germ cells takes approximately one year in females and half a year in males. Staining of tissue sections with an antibody against E. ancora Vasa (Eavas) revealed anti-Eavas immunoreactivity in the oogonia, early oocyte, and developing oocyte, but only faint or undetectable reactivity in developing oocytes that were >150 µm in diameters. In males, Eavas could be detected in the spermatogonia and primary spermatocytes but was only faintly detectable in the secondary spermatocytes, spermatids, and sperms. Furthermore, a reverse transcription-polymerase chain reaction analysis and Western blotting analysis of unfertilized mature eggs proved the presence of Eavas transcripts and proteins, suggesting that Eavas may be a maternal factor. Vasa may represent a germ cell marker for corals, and would allow us to distinguish germ cells from somatic cells in coral bodies that have no distinct organs.


Asunto(s)
Antozoos/fisiología , ARN Helicasas DEAD-box/metabolismo , Gametogénesis/fisiología , Oocitos/metabolismo , Espermatocitos/metabolismo , Animales , Antozoos/citología , Femenino , Masculino , Oocitos/citología , Espermatocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA