Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Endocr Soc ; 8(6): bvae071, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38721109

RESUMEN

Background: Customized and standard automated insulin delivery (AID) systems for use in pregnancies of women with preexisting type 1 diabetes (T1D) are being developed and tested to achieve pregnancy appropriate continuous glucose monitoring (CGM) targets. Guidance on the use of CGM for treatment decisions during pregnancy in the United States is limited. Methods: Ten pregnant women with preexisting T1D participated in a trial evaluating at-home use of a pregnancy-specific AID system. Seven-point self-monitoring of blood glucose (SMBG) was compared to the closest sensor glucose (Dexcom G6 CGM) value biweekly to assess safety and reliability based on the 20%/20 mg/dL criteria. Results: All participants completed the study with 7 participants satisfying the safety and reliability criteria with a mean absolute relative difference of 10.3%. Three participants did not fulfill the criteria, mainly because the frequency of SMBG did not meet the requirements. Conclusion: Dexcom G6 CGM is safe and accurate in the real-world setting for use in pregnant women with preexisting T1D with reduced SMBG testing as part of a pregnancy-specific AID system.

2.
Diabetes Care ; 46(7): 1425-1431, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196353

RESUMEN

OBJECTIVE: There are no commercially available hybrid closed-loop insulin delivery systems customized to achieve pregnancy-specific glucose targets in the U.S. This study aimed to evaluate the feasibility and performance of at-home use of a zone model predictive controller-based closed-loop insulin delivery system customized for pregnancies complicated by type 1 diabetes (CLC-P). RESEARCH DESIGN AND METHODS: Pregnant women with type 1 diabetes using insulin pumps were enrolled in the second or early third trimester. After study sensor wear collecting run-in data on personal pump therapy and 2 days of supervised training, participants used CLC-P targeting 80-110 mg/dL during the day and 80-100 mg/dL overnight running on an unlocked smartphone at home. Meals and activities were unrestricted throughout the trial. The primary outcome was the continuous glucose monitoring percentage of time in the target range 63-140 mg/dL versus run-in. RESULTS: Ten participants (HbA1c 5.8 ± 0.6%) used the system from mean gestational age of 23.7 ± 3.5 weeks. Mean percentage time in range increased 14.1 percentage points, equivalent to 3.4 h per day, compared with run-in (run-in 64.5 ± 16.3% versus CLC-P 78.6 ± 9.2%; P = 0.002). During CLC-P use, there was significant decrease in both time over 140 mg/dL (P = 0.033) and the hypoglycemic ranges of less than 63 mg/dL and 54 mg/dL (P = 0.037 for both). Nine participants exceeded consensus goals of above 70% time in range during CLC-P use. CONCLUSIONS: The results show that the extended use of CLC-P at home until delivery is feasible. Larger, randomized studies are needed to further evaluate system efficacy and pregnancy outcomes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Femenino , Embarazo , Lactante , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Insulina/uso terapéutico , Glucemia , Automonitorización de la Glucosa Sanguínea/métodos , Sistemas de Infusión de Insulina , Estudios Cruzados , Hipoglucemiantes/uso terapéutico , Resultado del Embarazo , Insulina Regular Humana/uso terapéutico
3.
J Diabetes Sci Technol ; 17(4): 1038-1048, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35118893

RESUMEN

BACKGROUND: The estimation of available active insulin remains a limitation of automated insulin delivery systems. Currently, insulin pumps calculate active insulin using mathematical decay curves, while quantitative measurements of insulin would explicitly provide person-specific PK insulin dynamics to assess remaining active insulin more accurately, permitting more effective glucose control. METHODS: We performed the first clinical evaluation of an insulin immunosensor chip, providing near real-time measurements of insulin levels. In this study, we sought to determine the accuracy of the novel insulin sensor and assess its therapeutic risk and benefit by presenting a new tool developed to indicate the potential therapeutic consequences arising from inaccurate insulin measurements. RESULTS: Nine adult participants with type-1 diabetes completed the study. The change from baseline in immunosensor-measured insulin levels was compared with values obtained by standard enzyme-linked immunosorbant assay (ELISA) after preprandial injection of insulin. The point-of-care quantification of insulin levels revealed similar temporal trends as those from the laboratory insulin ELISA. The results showed that 70% of the paired immunosensor-reference values were concordant, which suggests that the patient could take action safely based on insulin concentration obtained by the novel sensor. CONCLUSIONS: This proposed technology and preliminary feasibility evaluation show encouraging results for near real-time evaluation of insulin levels, with the potential to improve diabetes management. Real-time measurements of insulin provide person-specific insulin dynamics that could be used to make more informed decisions regarding insulin dosing, thus helping to prevent hypoglycemia and improve diabetes outcomes.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus Tipo 1 , Adulto , Humanos , Insulina , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea/métodos , Inmunoensayo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Insulina Regular Humana/uso terapéutico
4.
J Diabetes Sci Technol ; 17(4): 1029-1037, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35043720

RESUMEN

BACKGROUND: Clinical decision support systems that incorporate information from frequent insulin measurements to enhance individualized diabetes management remain an unmet goal. The development of a disposable insulin strip for fast decentralized point-of-care detection replacing the current centralized lab-based methods used in clinical practice would be highly desirable to improve the establishment of individual insulin absorption patterns and algorithm modeling processes. METHODS: We carried out the development and optimization of a novel decentralized disposable insulin electrochemical sensor focusing on obtaining high analytical and operational performance toward achieving a true point-of-care insulin testing device for clinical on-site application. RESULTS: Our novel insulin immunosensor demonstrated an attractive performance and efficient user-friendly operation by providing high sensitivity capability to detect endogenous and analog insulin with a limit of detection of 30.2 pM (4.3 µiU/mL), rapid time-to-result, stability toward remote site application, and scalable low-cost fabrication with an estimated cost-of-goods for disposable consumables of below $5, capable of near real-time insulin detection in a microliter (≤10 µL) sample droplet of undiluted serum within 30 minutes. CONCLUSIONS: The results obtained in the optimization and characterization of our novel insulin sensor illustrate its suitability for its potential application in remote clinical environments for frequent insulin monitoring. Future work will test the insulin sensor in a clinical research setting to assess its efficacy in individuals with type 1 diabetes.


Asunto(s)
Técnicas Biosensibles , Insulina , Humanos , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Insulina Regular Humana , Toma de Decisiones Clínicas
5.
J Diabetes Sci Technol ; 17(4): 935-942, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35473359

RESUMEN

BACKGROUND: We investigated the potential benefits of automated insulin delivery (AID) among individuals with type 1 diabetes (T1D) in sub-populations of baseline device use determined by continuous glucose monitor (CGM) use status and insulin delivery via multiple daily injections (MDI) or insulin pump. MATERIALS AND METHODS: In a six-month randomized, multicenter trial, 168 individuals were assigned to closed-loop control (CLC, Control-IQ, Tandem Diabetes Care), or sensor-augmented pump (SAP) therapy. The trial included a two- to eight-week run-in phase to train participants on study devices. The participants were stratified into four subgroups: insulin pump and CGM (pump+CGM), pump-only, MDI and CGM (MDI+CGM), and MDI users without CGM (MDI-only) users. We compared glycemic outcomes among four subgroups. RESULTS: At baseline, 61% were pump+CGM users, 18% pump-only users, 10% MDI+CGM users, and 11% MDI-only users. Mean time in range 70-180 mg/dL (TIR) improved from baseline in the four subgroups using CLC: pump+CGM, 62% to 73%; pump-only, 61% to 70%; MDI+CGM, 54% to 68%; and MDI-only, 61% to 69%. The reduction in time below 70 mg/dL from baseline was comparable among the four subgroups. No interaction effect was detected with baseline device use for TIR (P = .67) or time below (P = .77). On the System Usability Questionnaire, scores were high at 26 weeks for all subgroups: pump+CGM: 87.2 ± 12.1, pump-only: 89.4 ± 8.2, MDI+CGM 87.2 ± 9.3, MDI: 78.1 ± 15. CONCLUSIONS: There was a consistent benefit in patients with T1D when using CLC, regardless of baseline insulin delivery modality or CGM use. These data suggest that this CLC system can be considered across a wide range of patients.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes , Automonitorización de la Glucosa Sanguínea , Glucemia , Insulina , Insulina Regular Humana/uso terapéutico , Sistemas de Infusión de Insulina
6.
Anal Chem ; 94(26): 9217-9225, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35715001

RESUMEN

Decentralized sensing of analytes in remote locations is today a reality. However, the number of measurable analytes remains limited, mainly due to the requirement for time-consuming successive standard additions calibration used to address matrix effects and resulting in greatly delayed results, along with more complex and costly operation. This is particularly challenging in commonly used immunoassays of key biomarkers that typically require from 60 to 90 min for quantitation based on two standard additions, hence hindering their implementation for rapid and routine diagnostic applications, such as decentralized point-of-care (POC) insulin testing. In this work we have developed and demonstrated the theoretical framework for establishing a universal slope for direct calibration-free POC insulin immunoassays in serum samples using an electrochemical biosensor (developed originally for extended calibration by standard additions). The universal slope is presented as an averaged slope constant, relying on 68 standard additions-based insulin determinations in human sera. This new quantitative analysis approach offers reliable sample measurement without successive standard additions, leading to a dramatically simplified and faster assay (30 min vs 90 min when using 2 standard additions) and greatly reduced costs, without compromising the analytical performance while significantly reducing the analyses costs. The substantial improvements associated with the new universal slope concept have been demonstrated successfully for calibration-free measurements of serum insulin in 30 samples from individuals with type 1 diabetes using meticulous statistical analysis, supporting the prospects of applying this immunoassay protocol to routine decentralized POC insulin testing.


Asunto(s)
Técnicas Biosensibles , Insulina , Biomarcadores/análisis , Humanos , Inmunoensayo/métodos , Pruebas en el Punto de Atención
7.
Diabetes Technol Ther ; 24(9): 635-642, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35549708

RESUMEN

Background: Automated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Methods: Adults (≥18 years of age) with type 1 diabetes were randomized to either sensor-augmented pump (SAP) (inclusive of predictive low-glucose suspend) or adaptive zone model predictive control AID for 13 weeks, then crossed over to the other arm. Each week, the AID insulin delivery settings were sequentially and automatically updated by an adaptation system running on the study phone. Primary outcome was sensor glucose time-in-range 70-180 mg/dL, with noninferiority in percent time below 54 mg/dL as a hierarchical outcome. Results: Thirty-five participants completed the trial (mean age 39 ± 16 years, HbA1c at enrollment 6.9% ± 1.0%). Mean time-in-range 70-180 mg/dL was 66% with SAP versus 69% with AID (mean adjusted difference +2% [95% confidence interval: -1% to +6%], P = 0.22). Median time <70 mg/dL improved from 3.0% with SAP to 1.6% with AID (-1.5% [-2.4% to -0.5%], P = 0.002). The adaptation system decreased initial basal rates by a median of 4% (-8%, 16%) and increased initial carbohydrate ratios by a median of 45% (32%, 59%) after 13 weeks. Conclusions: Automated adaptation of insulin delivery settings with AID use did not significantly improve time-in-range in this very well-controlled population. Additional study and further refinement of the adaptation system are needed, especially in populations with differing degrees of baseline glycemic control, who may show larger benefits from adaptation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Adulto , Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Recién Nacido , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Insulina Regular Humana/uso terapéutico , Persona de Mediana Edad , Pacientes Ambulatorios , Adulto Joven
8.
Diabetes Technol Ther ; 24(8): 544-555, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35349353

RESUMEN

Background: Pregnancies in type 1 diabetes are high risk, and data in the United States are limited regarding continuous glucose monitoring (CGM)-based hypoglycemia throughout pregnancy while on sensor-augmented insulin pump therapy. Materials and Methods: Pregnant women with type 1 diabetes in the LOIS-P Study (Longitudinal Observation of Insulin use and glucose Sensor metrics in Pregnant women with type 1 diabetes using continuous glucose monitors and insulin pumps) were enrolled before 17 weeks gestation at three U.S. centers and we used their personal insulin pump and a study Dexcom G6 CGM. We analyzed data of 25 pregnant women for CGM hypoglycemia based on international consensus guidelines for percentage time <63 and 54 mg/dL, hypoglycemic events and prolonged hypoglycemia events for 24-h, daytime, and overnight periods, and severe hypoglycemia (SH) episodes. Results: For a 24-h period, biweekly median percentage of time <63 mg/dL ranged from 0.8% at biweek 4-5 to 3.7% at biweek 14-15 with high variability throughout pregnancy. Median percentage of time <63 and 54 mg/dL was higher overnight than daytime (P < 0.01). Hypoglycemic events occurred throughout the pregnancy, ranged 1-4 events per 2 weeks, significantly decreased after the 20th week, and occurred predominantly during daytime (P < 0.01). For overnight period, hypoglycemia and events were more concentrated from 12 to 3 am. Seven prolonged hypoglycemia events without any associated SH occurred in four participants (16%), primarily overnight. Three participants experienced a single episode of SH. Conclusions: Our results suggest a higher overall risk of hypoglycemia throughout pregnancy during the overnight period with continued daytime risk of hypoglycemic events in pregnancies complicated by type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Glucemia , Automonitorización de la Glucosa Sanguínea/métodos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Femenino , Humanos , Hipoglucemia/inducido químicamente , Hipoglucemia/tratamiento farmacológico , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Sistemas de Infusión de Insulina , Embarazo , Estudios Prospectivos
9.
Diabetes Technol Ther ; 24(7): 471-480, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35230138

RESUMEN

Objective: Evaluating the feasibility of closed-loop insulin delivery with a zone model predictive control (zone-MPC) algorithm designed for pregnancy complicated by type 1 diabetes (T1D). Research Design and Methods: Pregnant women with T1D from 14 to 32 weeks gestation already using continuous glucose monitor (CGM) augmented pump therapy were enrolled in a 2-day multicenter supervised outpatient study evaluating pregnancy-specific zone-MPC based closed-loop control (CLC) with the interoperable artificial pancreas system (iAPS) running on an unlocked smartphone. Meals and activities were unrestricted. The primary outcome was the CGM percentage of time between 63 and 140 mg/dL compared with participants' 1-week run-in period. Early (2-h) postprandial glucose control was also evaluated. Results: Eleven participants completed the study (age: 30.6 ± 4.1 years; gestational age: 20.7 ± 3.5 weeks; weight: 76.5 ± 15.3 kg; hemoglobin A1c: 5.6% ± 0.5% at enrollment). No serious adverse events occurred. Compared with the 1-week run-in, there was an increased percentage of time in 63-140 mg/dL during supervised CLC (CLC: 81.5%, run-in: 64%, P = 0.007) with less time >140 mg/dL (CLC: 16.5%, run-in: 30.8%, P = 0.029) and time <63 mg/dL (CLC: 2.0%, run-in:5.2%, P = 0.039). There was also less time <54 mg/dL (CLC: 0.7%, run-in:1.6%, P = 0.030) and >180 mg/dL (CLC: 4.9%, run-in: 13.1%, P = 0.032). Overnight glucose control was comparable, except for less time >250 mg/dL (CLC: 0%, run-in:3.9%, P = 0.030) and lower glucose standard deviation (CLC: 23.8 mg/dL, run-in:42.8 mg/dL, P = 0.007) during CLC. Conclusion: In this pilot study, use of the pregnancy-specific zone-MPC was feasible in pregnant women with T1D. Although the duration of our study was short and the number of participants was small, our findings add to the limited data available on the use of CLC systems during pregnancy (NCT04492566).


Asunto(s)
Diabetes Mellitus Tipo 1 , Páncreas Artificial , Adulto , Algoritmos , Glucemia , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Estudios de Factibilidad , Femenino , Humanos , Hipoglucemiantes , Lactante , Insulina , Sistemas de Infusión de Insulina , Insulina Regular Humana/uso terapéutico , Páncreas Artificial/efectos adversos , Proyectos Piloto , Embarazo
10.
Diabetes Technol Ther ; 24(5): 338-349, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35049354

RESUMEN

Background: Automated insulin delivery (AID) systems have not been evaluated in the context of psychological and pharmacological stress in type 1 diabetes. Our objective was to determine glycemic control and insulin use with Zone Model Predictive Control (zone-MPC) AID system enhanced for states of persistent hyperglycemia versus sensor-augmented pump (SAP) during outpatient use, including in-clinic induced stress. Materials and Methods: Randomized, crossover, 2-week trial of zone-MPC AID versus SAP in 14 adults with type 1 diabetes. In each arm, each participant was studied in-clinic with psychological stress induction (Trier Social Stress Test [TSST] and Socially Evaluated Cold Pressor Test [SECPT]), followed by pharmacological stress induction with oral hydrocortisone (total four sessions per participant). The main outcomes were 2-week continuous glucose monitor percent time in range (TIR) 70-180 mg/dL, and glucose and insulin outcomes during and overnight following stress induction. Results: During psychological stress, AID decreased glycemic variability percentage by 13.4% (P = 0.009). During pharmacological stress, including the following overnight, there were no differences in glucose outcomes and total insulin between AID and physician-assisted SAP. However, with AID total user-requested insulin was lower by 6.9 U (P = 0.01) for pharmacological stress. Stress induction was validated by changes in heart rate and salivary cortisol levels. During the 2-week AID use, TIR was 74.4% (vs. SAP 63.1%, P = 0.001) and overnight TIR was 78.3% (vs. SAP 63.1%, P = 0.004). There were no adverse events. Conclusions: Zone-MPC AID can reduce glycemic variability and the need for user-requested insulin during pharmacological stress and can improve overall glycemic outcomes. Clinical Trial Identifier NCT04142229.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Adulto , Glucemia , Automonitorización de la Glucosa Sanguínea , Estudios Cruzados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucosa , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Insulina Regular Humana/uso terapéutico , Pacientes Ambulatorios
11.
Diabetes Technol Ther ; 24(1): 18-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34491825

RESUMEN

Background: Expert opinion guidelines and limited data from clinical trials recommend adjustment to bolus insulin doses based on continuous glucose monitor (CGM) trend data, yet minimal evidence exists to support this approach. We performed a clinical evaluation of a novel CGM-informed bolus calculator (CIBC) with automatic insulin bolus dose adjustment based on CGM trend used with sensor-augmented pump therapy. Materials and Methods: In this multicenter, outpatient study, participants 6-70 years of age with type 1 diabetes (T1D) used the Omnipod® 5 System in Manual Mode, first for 7 days without a connected CGM (standard bolus calculator, SBC, phase 1) and then for 7 days with a connected CGM using the CIBC (CIBC phase 2). The integrated bolus calculator used stored pump settings plus user-estimated meal size and/or either a manually entered capillary glucose value (SBC phase) or an imported current CGM value and trend (CIBC phase) to recommend a bolus amount. The CIBC automatically increased or decreased the suggested bolus amount based on the CGM trend. Results: Twenty-five participants, (mean ± standard deviation) 27 ± 15 years of age, with T1D duration 12 ± 9 years and A1C 7.0% ± 0.9% completed the study. There were significantly fewer sensor readings <70 mg/dL 4 h postbolus with the CIBC compared to the SBC (2.1% ± 2.0% vs. 2.8 ± 2.7, P = 0.03), while percent of sensor readings >180 and 70-180 mg/dL remained the same. There was no difference in insulin use or number of boluses given between the two phases. Conclusion: The CIBC was safe when used with the Omnipod 5 System in Manual Mode, with fewer hypoglycemic readings in the postbolus period compared to the SBC. This trial was registered at ClinicalTrials.gov (NCT04320069).


Asunto(s)
Diabetes Mellitus Tipo 1 , Glucosa , Adolescente , Adulto , Glucemia , Automonitorización de la Glucosa Sanguínea , Niño , Preescolar , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Adulto Joven
12.
Comput Biol Med ; 135: 104633, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34346318

RESUMEN

This paper introduces methods to estimate aspects of physical activity and sedentary behavior from three-axis accelerometer data collected with a wrist-worn device at a sampling rate of 32 [Hz] on adults with type 1 diabetes (T1D) in free-living conditions. In particular, we present two methods able to detect and grade activity based on its intensity and individual fitness as sedentary, mild, moderate or vigorous, and a method that performs activity classification in a supervised learning framework to predict specific user behaviors. Population results for activity level grading show multi-class average accuracy of 99.99%, precision of 98.0 ± 2.2%, recall of 97.9 ± 3.5% and F1 score of 0.9 ± 0.0. As for the specific behavior prediction, our best performing classifier, gave population multi-class average accuracy of 92.43 ± 10.32%, precision of 92.94 ± 9.80%, recall of 92.20 ± 10.16% and F1 score of 92.56 ± 9.94%. Our investigation showed that physical activity and sedentary behavior can be detected, graded and classified with good accuracy and precision from three-axial accelerometer data collected in free-living conditions on people with T1D. This is particularly significant in the context of automated glucose control systems for diabetes, in that the methods we propose have the potential to inform changes in treatment parameters in response to the intensity of physical activity, allowing patients to meet their glycemic targets.


Asunto(s)
Diabetes Mellitus Tipo 1 , Acelerometría , Adulto , Ejercicio Físico , Humanos , Conducta Sedentaria , Condiciones Sociales , Muñeca
13.
Diabetes Technol Ther ; 23(12): 807-817, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34270347

RESUMEN

Background: Suboptimal glycemic control is associated with maternal and neonatal morbidity and mortality in pregnancy complicated by type 1 diabetes (T1D). Prospective analysis of continuous glucose monitoring (CGM) metrics, insulin pump settings, and insulin delivery can better characterize the changes in glycemic levels and insulin use throughout pregnancy with T1D. Materials and Methods: Prescribed parameters, insulin delivery, carbohydrate intake, and CGM data for 25 pregnant women with T1D from three U.S. sites were collected. Participants enrolled before 17 weeks gestation and used personal insulin pumps and study CGM. Mean daily total, basal, and bolus insulin doses (units/kg), CGM time in range (TIR: 63-140 mg/dL), and pump-entered carbohydrates were analyzed for every 2-week gestational interval. Linear mixed-effects regression models were used to evaluate changes across gestational ages compared to 12-14 weeks. Results: Basal insulin was higher during weeks 6-12 and 24-40. Daily bolus and total insulin were higher during weeks 20-40. Pump parameters were adjusted to intensify insulin therapy from 22 weeks onward. Average TIR across pregnancy was 59% ± 14%. Between 18 and 30 weeks, TIR was significantly lower, and time above range was significantly higher compared to the reference biweek. Time below target was lower between 22 and 34 weeks. Seven participants achieved >70% recommended TIR for pregnancy. Participants with maternal complications or infant neonatal intensive care unit admissions had lower TIR. Conclusion: While insulin dosing changed significantly with advancing gestation, most participants did not achieve >70% TIR. Customized anticipatory pump setting adjustments and automated systems aimed toward the designated TIR are needed to improve outcomes for this population. NCT03761615.


Asunto(s)
Diabetes Mellitus Tipo 1 , Benchmarking , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Femenino , Humanos , Hipoglucemiantes/uso terapéutico , Lactante , Recién Nacido , Insulina/uso terapéutico , Embarazo , Mujeres Embarazadas
16.
Diabetes Care ; 43(8): 1822-1828, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32471910

RESUMEN

OBJECTIVE: Limited information is available about glycemic outcomes with a closed-loop control (CLC) system compared with a predictive low-glucose suspend (PLGS) system. RESEARCH DESIGN AND METHODS: After 6 months of use of a CLC system in a randomized trial, 109 participants with type 1 diabetes (age range, 14-72 years; mean HbA1c, 7.1% [54 mmol/mol]) were randomly assigned to CLC (N = 54, Control-IQ) or PLGS (N = 55, Basal-IQ) groups for 3 months. The primary outcome was continuous glucose monitor (CGM)-measured time in range (TIR) for 70-180 mg/dL. Baseline CGM metrics were computed from the last 3 months of the preceding study. RESULTS: All 109 participants completed the study. Mean ± SD TIR was 71.1 ± 11.2% at baseline and 67.6 ± 12.6% using intention-to-treat analysis (69.1 ± 12.2% using per-protocol analysis excluding periods of study-wide suspension of device use) over 13 weeks on CLC vs. 70.0 ± 13.6% and 60.4 ± 17.1% on PLGS (difference = 5.9%; 95% CI 3.6%, 8.3%; P < 0.001). Time >180 mg/dL was lower in the CLC group than PLGS group (difference = -6.0%; 95% CI -8.4%, -3.7%; P < 0.001) while time <54 mg/dL was similar (0.04%; 95% CI -0.05%, 0.13%; P = 0.41). HbA1c after 13 weeks was lower on CLC than PLGS (7.2% [55 mmol/mol] vs. 7.5% [56 mmol/mol], difference -0.34% [-3.7 mmol/mol]; 95% CI -0.57% [-6.2 mmol/mol], -0.11% [1.2 mmol/mol]; P = 0.0035). CONCLUSIONS: Following 6 months of CLC, switching to PLGS reduced TIR and increased HbA1c toward their pre-CLC values, while hypoglycemia remained similarly reduced with both CLC and PLGS.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Adolescente , Adulto , Anciano , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea/métodos , Diabetes Mellitus Tipo 1/diagnóstico , Femenino , Humanos , Hipoglucemia/sangre , Hipoglucemia/inducido químicamente , Hipoglucemia/diagnóstico , Inyecciones Subcutáneas , Sistemas de Infusión de Insulina/normas , Análisis de Intención de Tratar , Masculino , Persona de Mediana Edad , Pronóstico , Resultado del Tratamiento , Estados Unidos , Adulto Joven
18.
Diabetes Technol Ther ; 22(12): 865-874, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32319791

RESUMEN

Background: Automated Insulin Delivery (AID) hybrid closed-loop systems have not been well studied in the context of prescribed meals. We evaluated performance of our interoperable artificial pancreas system (iAPS) in the at-home setting, running on an unlocked smartphone, with scheduled meal challenges in a randomized crossover trial. Methods: Ten adults with type 1 diabetes completed 2 weeks of AID-based control and 2 weeks of conventional therapy in random order where they consumed regular pasta or extra-long grain white rice as part of a complete dinner meal on six different occasions in both arms (each meal thrice in random order). Surveys assessed satisfaction with AID use. Results: Postprandial differences in conventional therapy were 10,919.0 mg/dL × min (95% confidence interval [CI] 3190.5-18,648.0, P = 0.009) for glucose area under the curve (AUC) and 40.9 mg/dL (95% CI 4.6-77.3, P = 0.03) for peak continuous glucose monitor glucose, with rice showing greater increases than pasta. White rice resulted in a lower estimate over pasta by a factor of 0.22 (95% CI 0.08-0.63, P = 0.004) for AUC under 70 mg/dL. These glycemic differences in both meal types were reduced under AID-based control and were not statistically significant, where 0-2 h insulin delivery decreased by 0.45 U for pasta (P = 0.001) and by 0.27 U for white rice (P = 0.01). Subjects reported high overall satisfaction with the iAPS. Conclusions: The AID system running on an unlocked smartphone improved postprandial glucose control over conventional therapy in the setting of challenging meals in the outpatient setting. Clinical Trial Registry: clinicaltrials.gov NCT03767790.


Asunto(s)
Diabetes Mellitus Tipo 1 , Sistemas de Infusión de Insulina , Insulina , Páncreas Artificial , Adulto , Glucemia , Estudios Cruzados , Carbohidratos de la Dieta/administración & dosificación , Humanos , Insulina/administración & dosificación , Insulina/uso terapéutico , Comidas , Oryza , Pacientes Ambulatorios , Periodo Posprandial , Teléfono Inteligente
19.
Diabetes Care ; 43(3): 607-615, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937608

RESUMEN

OBJECTIVE: Assess the efficacy of inControl AP, a mobile closed-loop control (CLC) system. RESEARCH DESIGN AND METHODS: This protocol, NCT02985866, is a 3-month parallel-group, multicenter, randomized unblinded trial designed to compare mobile CLC with sensor-augmented pump (SAP) therapy. Eligibility criteria were type 1 diabetes for at least 1 year, use of insulin pumps for at least 6 months, age ≥14 years, and baseline HbA1c <10.5% (91 mmol/mol). The study was designed to assess two coprimary outcomes: superiority of CLC over SAP in continuous glucose monitor (CGM)-measured time below 3.9 mmol/L and noninferiority in CGM-measured time above 10 mmol/L. RESULTS: Between November 2017 and May 2018, 127 participants were randomly assigned 1:1 to CLC (n = 65) versus SAP (n = 62); 125 participants completed the study. CGM time below 3.9 mmol/L was 5.0% at baseline and 2.4% during follow-up in the CLC group vs. 4.7% and 4.0%, respectively, in the SAP group (mean difference -1.7% [95% CI -2.4, -1.0]; P < 0.0001 for superiority). CGM time above 10 mmol/L was 40% at baseline and 34% during follow-up in the CLC group vs. 43% and 39%, respectively, in the SAP group (mean difference -3.0% [95% CI -6.1, 0.1]; P < 0.0001 for noninferiority). One severe hypoglycemic event occurred in the CLC group, which was unrelated to the study device. CONCLUSIONS: In meeting its coprimary end points, superiority of CLC over SAP in CGM-measured time below 3.9 mmol/L and noninferiority in CGM-measured time above 10 mmol/L, the study has demonstrated that mobile CLC is feasible and could offer certain usability advantages over embedded systems, provided the connectivity between system components is stable.


Asunto(s)
Técnicas Biosensibles/instrumentación , Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Telemedicina/instrumentación , Adolescente , Adulto , Anciano , Técnicas Biosensibles/métodos , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea/efectos adversos , Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/métodos , Femenino , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Insulina Regular Humana/administración & dosificación , Insulina Regular Humana/efectos adversos , Masculino , Persona de Mediana Edad , Aplicaciones Móviles , Páncreas Artificial , Estados Unidos , Adulto Joven
20.
N Engl J Med ; 381(18): 1707-1717, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31618560

RESUMEN

BACKGROUND: Closed-loop systems that automate insulin delivery may improve glycemic outcomes in patients with type 1 diabetes. METHODS: In this 6-month randomized, multicenter trial, patients with type 1 diabetes were assigned in a 2:1 ratio to receive treatment with a closed-loop system (closed-loop group) or a sensor-augmented pump (control group). The primary outcome was the percentage of time that the blood glucose level was within the target range of 70 to 180 mg per deciliter (3.9 to 10.0 mmol per liter), as measured by continuous glucose monitoring. RESULTS: A total of 168 patients underwent randomization; 112 were assigned to the closed-loop group, and 56 were assigned to the control group. The age range of the patients was 14 to 71 years, and the glycated hemoglobin level ranged from 5.4 to 10.6%. All 168 patients completed the trial. The mean (±SD) percentage of time that the glucose level was within the target range increased in the closed-loop group from 61±17% at baseline to 71±12% during the 6 months and remained unchanged at 59±14% in the control group (mean adjusted difference, 11 percentage points; 95% confidence interval [CI], 9 to 14; P<0.001). The results with regard to the main secondary outcomes (percentage of time that the glucose level was >180 mg per deciliter, mean glucose level, glycated hemoglobin level, and percentage of time that the glucose level was <70 mg per deciliter or <54 mg per deciliter [3.0 mmol per liter]) all met the prespecified hierarchical criterion for significance, favoring the closed-loop system. The mean difference (closed loop minus control) in the percentage of time that the blood glucose level was lower than 70 mg per deciliter was -0.88 percentage points (95% CI, -1.19 to -0.57; P<0.001). The mean adjusted difference in glycated hemoglobin level after 6 months was -0.33 percentage points (95% CI, -0.53 to -0.13; P = 0.001). In the closed-loop group, the median percentage of time that the system was in closed-loop mode was 90% over 6 months. No serious hypoglycemic events occurred in either group; one episode of diabetic ketoacidosis occurred in the closed-loop group. CONCLUSIONS: In this 6-month trial involving patients with type 1 diabetes, the use of a closed-loop system was associated with a greater percentage of time spent in a target glycemic range than the use of a sensor-augmented insulin pump. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases; iDCL ClinicalTrials.gov number, NCT03563313.).


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Páncreas Artificial , Adolescente , Adulto , Anciano , Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diseño de Equipo , Femenino , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Sistemas de Infusión de Insulina/efectos adversos , Masculino , Persona de Mediana Edad , Páncreas Artificial/efectos adversos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...