Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Physiol Rep ; 11(20): e15838, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37849042

RESUMEN

Cardiac ischemic reperfusion injury (IRI) is paradoxically instigated by reestablishing blood-flow to ischemic myocardium typically from a myocardial infarction (MI). Although revascularization following MI remains the standard of care, effective strategies remain limited to prevent or attenuate IRI. We hypothesized that epicardial placement of human placental amnion/chorion (HPAC) grafts will protect against IRI. Using a clinically relevant model of IRI, swine were subjected to 45 min percutaneous ischemia followed with (MI + HPAC, n = 3) or without (MI only, n = 3) HPAC. Cardiac function was assessed by echocardiography, and regional punch biopsies were collected 14 days post-operatively. A deep phenotyping approach was implemented by using histological interrogation and incorporating global proteomics and transcriptomics in nonischemic, ischemic, and border zone biopsies. Our results established HPAC limited the extent of cardiac injury by 50% (11.0 ± 2.0% vs. 22.0 ± 3.0%, p = 0.039) and preserved ejection fraction in HPAC-treated swine (46.8 ± 2.7% vs. 35.8 ± 4.5%, p = 0.014). We present comprehensive transcriptome and proteome profiles of infarct (IZ), border (BZ), and remote (RZ) zone punch biopsies from swine myocardium during the proliferative cardiac repair phase 14 days post-MI. Both HPAC-treated and untreated tissues showed regional dynamic responses, whereas only HPAC-treated IZ revealed active immune and extracellular matrix remodeling. Decreased endoplasmic reticulum (ER)-dependent protein secretion and increased antiapoptotic and anti-inflammatory responses were measured in HPAC-treated biopsies. We provide quantitative evidence HPAC reduced cardiac injury from MI in a preclinical swine model, establishing a potential new therapeutic strategy for IRI. Minimizing the impact of MI remains a central clinical challenge. We present a new strategy to attenuate post-MI cardiac injury using HPAC in a swine model of IRI. Placement of HPAC membrane on the heart following MI minimizes ischemic damage, preserves cardiac function, and promotes anti-inflammatory signaling pathways.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , Embarazo , Porcinos , Humanos , Femenino , Animales , Placenta/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Lesiones Cardíacas/tratamiento farmacológico , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad
2.
Nat Cardiovasc Res ; 2(1): 76-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36950336

RESUMEN

Cardiac cell surface proteins are drug targets and useful biomarkers for discriminating among cellular phenotypes and disease states. Here we developed an analytical platform, CellSurfer, that enables quantitative cell surface proteome (surfaceome) profiling of cells present in limited quantities, and we apply it to isolated primary human heart cells. We report experimental evidence of surface localization and extracellular domains for 1,144 N-glycoproteins, including cell-type-restricted and region-restricted glycoproteins. We identified a surface protein specific for healthy cardiomyocytes, LSMEM2, and validated an anti-LSMEM2 monoclonal antibody for flow cytometry and imaging. Surfaceome comparisons among pluripotent stem cell derivatives and their primary counterparts highlighted important differences with direct implications for drug screening and disease modeling. Finally, 20% of cell surface proteins, including LSMEM2, were differentially abundant between failing and non-failing cardiomyocytes. These results represent a rich resource to advance development of cell type and organ-specific targets for drug delivery, disease modeling, immunophenotyping and in vivo imaging.

3.
Transl Res ; 256: 56-72, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36640905

RESUMEN

Cushing's disease (CD) is a serious endocrine disorder attributed to an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that that subsequently leads to chronic hypercortisolemia. PitNET regression has been reported following treatment with the investigational selective glucocorticoid receptor (GR) modulator relacorilant, but the mechanisms behind that effect remain unknown. Human PitNET organoid models were generated from induced human pluripotent stem cells (iPSCs) or fresh tissue obtained from CD patient PitNETs (hPITOs). Genetically engineered iPSC derived organoids were used to model the development of corticotroph PitNETs expressing USP48 (iPSCUSP48) or USP8 (iPSCUSP8) somatic mutations. Organoids were treated with the GR antagonist mifepristone or the GR modulator relacorilant with or without somatostatin receptor (SSTR) agonists pasireotide or octreotide. In iPSCUSP48 and iPSCUSP8 cultures, mifepristone induced a predominant expression of SSTR2 with a concomitant increase in ACTH secretion and tumor cell proliferation. Relacorilant predominantly induced SSTR5 expression and tumor cell apoptosis with minimal ACTH induction. Hedgehog signaling mediated the induction of SSTR2 and SSTR5 in response to mifepristone and relacorilant. Relacorilant sensitized PitNET organoid responsiveness to pasireotide. Therefore, our study identified the potential therapeutic use of relacorilant in combination with somatostatin analogs and demonstrated the advantages of relacorilant over mifepristone, supporting its further development for use in the treatment of Cushing's disease patients.


Asunto(s)
Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Corticotrofos/metabolismo , Corticotrofos/patología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/uso terapéutico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/patología , Mifepristona/farmacología , Mifepristona/metabolismo , Mifepristona/uso terapéutico , Proteínas Hedgehog , Neoplasias Hipofisarias/tratamiento farmacológico , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/metabolismo , Hormona Adrenocorticotrópica/uso terapéutico
4.
Cells ; 11(21)2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36359740

RESUMEN

(1) Background: Cushing's disease (CD) is a serious endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that stimulates the adrenal glands to overproduce cortisol. Chronic exposure to excess cortisol has detrimental effects on health, including increased stroke rates, diabetes, obesity, cognitive impairment, anxiety, depression, and death. The first-line treatment for CD is pituitary surgery. Current surgical remission rates reported in only 56% of patients depending on several criteria. The lack of specificity, poor tolerability, and low efficacy of the subsequent second-line medical therapies make CD a medical therapeutic challenge. One major limitation that hinders the development of specific medical therapies is the lack of relevant human model systems that recapitulate the cellular composition of PitNET microenvironment. (2) Methods: human pituitary tumor tissue was harvested during transsphenoidal surgery from CD patients to generate organoids (hPITOs). (3) Results: hPITOs generated from corticotroph, lactotroph, gonadotroph, and somatotroph tumors exhibited morphological diversity among the organoid lines between individual patients and amongst subtypes. The similarity in cell lineages between the organoid line and the patient's tumor was validated by comparing the neuropathology report to the expression pattern of PitNET specific markers, using spectral flow cytometry and exome sequencing. A high-throughput drug screen demonstrated patient-specific drug responses of hPITOs amongst each tumor subtype. Generation of induced pluripotent stem cells (iPSCs) from a CD patient carrying germline mutation CDH23 exhibited dysregulated cell lineage commitment. (4) Conclusions: The human pituitary neuroendocrine tumor organoids represent a novel approach in how we model complex pathologies in CD patients, which will enable effective personalized medicine for these patients.


Asunto(s)
Tumores Neuroendocrinos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/cirugía , Organoides , Tumores Neuroendocrinos/tratamiento farmacológico , Hidrocortisona , Microambiente Tumoral
5.
Stem Cell Res ; 65: 102944, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36257093

RESUMEN

Pontocerebellar Hypoplasia 1B (PCH1B) is a severe autosomal recessive neurological disorder that is associated with mutations in the exosome complex component RRP40 (EXOSC3) gene. We generated and characterized an iPSC line from an individual with PCH1B that harbors a recessive homozygous c.395 A > C mutation in EXOSC3 and a family matched control from the probands unaffected mother. Each iPSC line presents with normal morphology and karyotype and express high levels of pluripotent markers. UAZTi009-A and UAZTi011-A are capable of directed differentiation and can be used as a vital experimental tool to study the development of PCH1B.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Proteínas de Unión al ARN , Humanos , Mutación/genética , Células Madre Pluripotentes Inducidas , Línea Celular
6.
Eur J Hum Genet ; 30(4): 450-457, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35082396

RESUMEN

Dilated cardiomyopathy (DCM) is characterized by cardiac enlargement and impaired ventricular contractility leading to heart failure. A single report identified variants in leiomodin-2 (LMOD2) as a cause of neonatally-lethal DCM. Here, we describe two siblings with DCM who died shortly after birth due to heart failure. Exome sequencing identified a homozygous LMOD2 variant in both siblings, (GRCh38)chr7:g.123656237G > A; NM_207163.2:c.273 + 1G > A, ablating the donor 5' splice-site of intron-1. Pre-mRNA splicing studies and western blot analysis on cDNA derived from proband cardiac tissue, MyoD-transduced proband skin fibroblasts and HEK293 cells transfected with LMOD2 gene constructs established variant-associated absence of canonically spliced LMOD2 mRNA and full-length LMOD2 protein. Immunostaining of proband heart tissue unveiled abnormally short actin-thin filaments. Our data are consistent with LMOD2 c.273 + 1G > A abolishing/reducing LMOD2 transcript expression by: (1) variant-associated perturbation in initiation of transcription due to ablation of the intron-1 donor; and/or (2) degradation of aberrant LMOD2 transcripts (resulting from use of alternative transcription start-sites or cryptic splice-sites) by nonsense-mediated decay. LMOD2 expression is critical for life and the absence of LMOD2 is associated with thin filament shortening and severe cardiac contractile dysfunction. This study describes the first splice-site variant in LMOD2 and confirms the role of LMOD2 variants in DCM.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Cardiomiopatía Dilatada/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Homocigoto , Humanos , Recién Nacido
7.
Tissue Eng Part B Rev ; 28(4): 891-911, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34476988

RESUMEN

Recent developments in applied developmental physiology have provided well-defined methodologies for producing human stem cell derived cardiomyocytes. The cardiomyocytes produced have become commonplace as cardiac physiology research models. Accessibility has also allowed for the development of tissue engineered human heart constructs for drug screening, surgical intervention, and investigating cardiac pathogenesis. However, cardiac tissue engineering is an interdisciplinary field that involves complex engineering and physiological concepts, which limits its accessibility. Our review provides a readable, broad reaching, and thorough discussion of major factors to consider for the development of cardiovascular tissues from stem cell derived cardiomyocytes. In this study, our review will examine important considerations in undertaking a cardiovascular tissue engineering project and will present, interpret, and summarize some of the recent advancements in this field. Throughout, we review different forms of tissue engineered constructs, a discussion on cardiomyocyte sources, and an in-depth discussion of the fabrication and maturation procedures for tissue engineered heart constructs. Impact statement With advancements in cardiac differentiation protocols, the production of human induced pluripotent stem cell derived cardiomyocytes is becoming cost effective and routine in the laboratory setting. Monolayer based culture methods are rapidly being replaced by three-dimensional (3D) tissue engineered constructs, which are more representative of the heart geometry. In the review presented, we delve into important concepts and tissue engineering principles that should be considered when generating 3D cardiac constructs, interpreting data acquired from, and embarking on a 3D cardiac tissue-based research project.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Evaluación Preclínica de Medicamentos , Humanos , Miocitos Cardíacos , Ingeniería de Tejidos/métodos
8.
J Allergy Clin Immunol ; 149(3): 923-933.e6, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34902435

RESUMEN

BACKGROUND: Treatments for coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are urgently needed but remain limited. SARS-CoV-2 infects cells through interactions of its spike (S) protein with angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) on host cells. Multiple cells and organs are targeted, particularly airway epithelial cells. OM-85, a standardized lysate of human airway bacteria with strong immunomodulating properties and an impeccable safety profile, is widely used to prevent recurrent respiratory infections. We found that airway OM-85 administration inhibits Ace2 and Tmprss2 transcription in the mouse lung, suggesting that OM-85 might hinder SARS-CoV-2/host cell interactions. OBJECTIVES: We sought to investigate whether and how OM-85 treatment protects nonhuman primate and human epithelial cells against SARS-CoV-2. METHODS: ACE2 and TMPRSS2 mRNA and protein expression, cell binding of SARS-CoV-2 S1 protein, cell entry of SARS-CoV-2 S protein-pseudotyped lentiviral particles, and SARS-CoV-2 cell infection were measured in kidney, lung, and intestinal epithelial cell lines, primary human bronchial epithelial cells, and ACE2-transfected HEK293T cells treated with OM-85 in vitro. RESULTS: OM-85 significantly downregulated ACE2 and TMPRSS2 transcription and surface ACE2 protein expression in epithelial cell lines and primary bronchial epithelial cells. OM-85 also strongly inhibited SARS-CoV-2 S1 protein binding to, SARS-CoV-2 S protein-pseudotyped lentivirus entry into, and SARS-CoV-2 infection of epithelial cells. These effects of OM-85 appeared to depend on SARS-CoV-2 receptor downregulation. CONCLUSIONS: OM-85 inhibits SARS-CoV-2 epithelial cell infection in vitro by downregulating SARS-CoV-2 receptor expression. Further studies are warranted to assess whether OM-85 may prevent and/or reduce the severity of coronavirus disease 2019.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , COVID-19/prevención & control , Extractos Celulares/administración & dosificación , Receptores Virales/antagonistas & inhibidores , Receptores Virales/inmunología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , COVID-19/inmunología , COVID-19/virología , Células CACO-2 , Extractos Celulares/inmunología , Células Cultivadas , Chlorocebus aethiops , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/virología , Células HEK293 , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/inmunología , Humanos , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/inmunología , Células Vero
9.
Stem Cell Reports ; 16(10): 2459-2472, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34525378

RESUMEN

The pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been attributed to its ability to enter through the membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, it has been heavily speculated that angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy may modulate SARS-CoV-2 infection. In this study, exposure of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and human endothelial cells (hECs) to SARS-CoV-2 identified significant differences in protein coding genes involved in immunity, viral response, and cardiomyocyte/endothelial structure. Specifically, transcriptome changes were identified in the tumor necrosis factor (TNF), interferon α/ß, and mitogen-activated protein kinase (MAPK) (hPSC-CMs) as well as nuclear factor kappa-B (NF-κB) (hECs) signaling pathways. However, pre-treatment of hPSC-CMs or hECs with two widely prescribed antihypertensive medications, losartan and lisinopril, did not affect the susceptibility of either cell type to SARS-CoV-2 infection. These findings demonstrate the toxic effects of SARS-CoV-2 in hPSC-CMs/hECs and, taken together with newly emerging multicenter trials, suggest that antihypertensive drug treatment alone does not alter SARS-CoV-2 infection.


Asunto(s)
Antihipertensivos/farmacología , Tratamiento Farmacológico de COVID-19 , Células Endoteliales/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , COVID-19/genética , Células Cultivadas , Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Lisinopril/farmacología , Losartán/farmacología , Miocitos Cardíacos/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Transcriptoma/efectos de los fármacos
10.
Cardiovasc Res ; 117(1): 188-200, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31995179

RESUMEN

AIMS: Heart failure is a major complication in cancer treatment due to the cardiotoxic effects of anticancer drugs, especially from the anthracyclines such as doxorubicin (DXR). DXR enhances oxidative stress and stimulates matrix metalloproteinase-2 (MMP-2) in cardiomyocytes. We investigated whether MMP inhibitors protect against DXR cardiotoxicity given the role of MMP-2 in proteolyzing sarcomeric proteins in the heart and remodelling the extracellular matrix. METHODS AND RESULTS: Eight-week-old male C57BL/6J mice were treated with DXR weekly with or without MMP inhibitors doxycycline or ONO-4817 by daily oral gavage for 4 weeks. Echocardiography was used to determine cardiac function and left ventricular remodelling before and after treatment. MMP inhibitors ameliorated DXR-induced systolic and diastolic dysfunction by reducing the loss in left ventricular ejection fraction, fractional shortening, and E'/A'. MMP inhibitors attenuated adverse left ventricular remodelling, reduced cardiomyocyte dropout, and prevented myocardial fibrosis. DXR increased myocardial MMP-2 activity in part also by upregulating N-terminal truncated MMP-2. Immunogold transmission electron microscopy showed that DXR elevated MMP-2 levels within the sarcomere and mitochondria which were associated with myofilament lysis, mitochondrial degeneration, and T-tubule distention. DXR-induced myofilament lysis was associated with increased titin proteolysis in the heart which was prevented by ONO-4817. DXR also increased the level and activity of MMP-2 in human embryonic stem cell-derived cardiomyocytes, which was reduced by ONO-4817. CONCLUSIONS: MMP-2 activation is an early event in DXR cardiotoxicity and contributes to myofilament lysis by proteolyzing cardiac titin. Two orally available MMP inhibitors ameliorated DXR cardiotoxicity by attenuating intracellular and extracellular matrix remodelling, suggesting their use may be a potential prophylactic strategy to prevent heart injury during chemotherapy.


Asunto(s)
Doxiciclina/farmacología , Matriz Extracelular/efectos de los fármacos , Cardiopatías/prevención & control , Metaloproteinasa 2 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Miocitos Cardíacos/efectos de los fármacos , Éteres Fenílicos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Cardiotoxicidad , Línea Celular , Modelos Animales de Enfermedad , Doxorrubicina , Matriz Extracelular/enzimología , Matriz Extracelular/patología , Fibrosis , Cardiopatías/inducido químicamente , Cardiopatías/enzimología , Cardiopatías/fisiopatología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/enzimología , Humanos , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/ultraestructura , Proteínas Quinasas/metabolismo , Proteolisis
11.
Cells ; 9(11)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143239

RESUMEN

The Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program at Banner Sun Health Research Institute (BSHRI) is a longitudinal clinicopathological study with a current enrollment of more than 900 living subjects for aging and neurodegenerative disease research. Annual clinical assessments are done by cognitive and movement neurologists and neuropsychologists. Brain and body tissues are collected at a median postmortem interval of 3.0 h for neuropathological diagnosis and banking. Since 2018, the program has undertaken banking of scalp fibroblasts derived from neuropathologically characterized donors with Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Here, we describe the procedure development and cell characteristics from 14 male and 15 female donors (mean ± SD of age: 83.6 ± 12.2). Fibroblasts from explant cultures were banked at passage 3. The results of mRNA analysis showed positive expression of fibroblast activation protein, vimentin, fibronectin, and THY1 cell surface antigen. We also demonstrated that the banked fibroblasts from a postmortem elderly donor were successfully reprogramed to human-induced pluripotent stem cells (hiPSCs). Taken together, we have demonstrated the successful establishment of a human autopsy-derived fibroblast banking program. The cryogenically preserved cells are available for request at the program website of the BSHRI.


Asunto(s)
Envejecimiento/patología , Bancos de Muestras Biológicas , Investigación Biomédica , Fibroblastos/patología , Enfermedades Neurodegenerativas/patología , Cuero Cabelludo/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Secuencia de Bases , Bancos de Muestras Biológicas/normas , Biomarcadores/metabolismo , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Memoria , Persona de Mediana Edad , Movimiento , Control de Calidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
12.
J Mol Cell Cardiol ; 149: 115-122, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33010256

RESUMEN

The ability to reprogram human somatic cells into human induced pluripotent stem cells (hiPSCs) has enabled researchers to generate cell types in vitro that have the potential to faithfully recapitulate patient-specific disease processes and phenotypes. hiPSC-derived cardiomyocytes (hiPSC-CMs) offer the promise of in vitro patient- and disease-specific models for drug testing and the discovery of novel therapeutic approaches for treating cardiovascular diseases. While methods to differentiate hiPSCs into cardiomyocytes have been demonstrated, the heterogeneity and immaturity of these differentiated populations have restricted their potential in reproducing human disease and the associated target cell phenotypes. These barriers may be overcome through comprehensive single-cell characterization to dissect the rich heterogeneity of hiPSC-CMs and to study the source of varying cell fates. In this study, we optimized and validated a new Single-Cell Western method to assess protein expression in hiPSC-CMs. To better understand distinct subpopulations generated from cardiomyocyte differentiations and to track populations at single-cell resolution over time, we measured and quantified the expression of cardiomyocyte subtype-specific proteins (MLC2V and MLC2A) using Single-Cell Westerns. By understanding their heterogeneity through single-cell protein expression and quantification, we may improve upon current cardiomyocyte differentiation protocols, generate hiPSC-CMs that are more representative of in vivo derived cardiomyocytes for disease modeling, and utilize hiPSC-CMs for regenerative medicine purposes. Single-Cell Westerns provide a robust platform for protein expression analysis at single-cell resolution.


Asunto(s)
Western Blotting , Proteínas en la Dieta/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Análisis de la Célula Individual , Calibración , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo
13.
Nature ; 572(7769): 335-340, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31316208

RESUMEN

Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-ß (PDGFRB) as a potential therapeutic target.


Asunto(s)
Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Mutación , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Calcio/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Haploinsuficiencia/genética , Homeostasis , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/análisis , ARN Mensajero/genética , Análisis de la Célula Individual
15.
Nat Commun ; 9(1): 4906, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464173

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become a powerful tool for human disease modeling and therapeutic testing. However, their use remains limited by their immaturity and heterogeneity. To characterize the source of this heterogeneity, we applied complementary single-cell RNA-seq and bulk RNA-seq technologies over time during hiPSC cardiac differentiation and in the adult heart. Using integrated transcriptomic and splicing analysis, more than half a dozen distinct single-cell populations were observed, several of which were coincident at a single time-point, day 30 of differentiation. To dissect the role of distinct cardiac transcriptional regulators associated with each cell population, we systematically tested the effect of a gain or loss of three transcription factors (NR2F2, TBX5, and HEY2), using CRISPR genome editing and ChIP-seq, in conjunction with patch clamp, calcium imaging, and CyTOF analysis. These targets, data, and integrative genomics analysis methods provide a powerful platform for understanding in vitro cellular heterogeneity.


Asunto(s)
Diferenciación Celular , Heterogeneidad Genética , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual/métodos , Potenciales de Acción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor de Transcripción COUP II/metabolismo , Señalización del Calcio , Humanos , Células Madre Pluripotentes Inducidas , Proteínas Represoras/metabolismo , Análisis de Secuencia de ARN , Proteínas de Dominio T Box/metabolismo , Transcriptoma
16.
Sci Rep ; 8(1): 6618, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700394

RESUMEN

Bioactive lipids such as sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) regulate diverse processes including cell proliferation, differentiation, and migration. However, their roles in cardiac differentiation and cardiomyocyte proliferation have not been explored. Using a 96-well differentiation platform for generating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) we found that S1P and LPA can independently enhance cardiomyocyte generation when administered at an early stage of differentiation. We showed that the combined S1P and LPA treatment of undifferentiated hiPSCs resulted in increased nuclear accumulation of ß-catenin, the canonical Wnt signaling pathway mediator, and synergized with CHIR99021, a glycogen synthase kinase 3 beta inhibitor, to enhance mesodermal induction and subsequent cardiac differentiation. At later stages of cardiac differentiation, the addition of S1P and LPA resulted in cell cycle initiation in hiPSC-CMs, an effect mediated through increased ERK signaling. Although the addition of S1P and LPA alone was insufficient to induce cell division, it was able to enhance ß-catenin-mediated hiPSC-CM proliferation. In summary, we demonstrated a developmental stage-specific effect of bioactive lipids to enhance hiPSC-CM differentiation and proliferation via modulating the effect of canonical Wnt/ß-catenin and ERK signaling. These findings may improve hiPSC-CM generation for cardiac disease modeling, precision medicine, and regenerative therapies.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Lípidos/farmacología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Biomarcadores , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mesodermo/citología , Mesodermo/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
17.
Cell Stem Cell ; 22(3): 428-444.e5, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499155

RESUMEN

Cardiac development requires coordinated and large-scale rearrangements of the epigenome. The roles and precise mechanisms through which specific epigenetic modifying enzymes control cardiac lineage specification, however, remain unclear. Here we show that the H3K4 methyltransferase SETD7 controls cardiac differentiation by reading H3K36 marks independently of its enzymatic activity. Through chromatin immunoprecipitation sequencing (ChIP-seq), we found that SETD7 targets distinct sets of genes to drive their stage-specific expression during cardiomyocyte differentiation. SETD7 associates with different co-factors at these stages, including SWI/SNF chromatin-remodeling factors during mesodermal formation and the transcription factor NKX2.5 in cardiac progenitors to drive their differentiation. Further analyses revealed that SETD7 binds methylated H3K36 in the bodies of its target genes to facilitate RNA polymerase II (Pol II)-dependent transcription. Moreover, abnormal SETD7 expression impairs functional attributes of terminally differentiated cardiomyocytes. Together, these results reveal how SETD7 acts at sequential steps in cardiac lineage commitment, and they provide insights into crosstalk between dynamic epigenetic marks and chromatin-modifying enzymes.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , N-Metiltransferasa de Histona-Lisina/genética , Miocardio/citología , Activación Transcripcional/genética , Señalización del Calcio , Diferenciación Celular/genética , Línea Celular , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Mesodermo/citología , Metilación , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética
18.
Sci Transl Med ; 9(377)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202772

RESUMEN

Tyrosine kinase inhibitors (TKIs), despite their efficacy as anticancer therapeutics, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen U.S. Food and Drug Administration-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a "cardiac safety index" to reflect the cardiotoxicities of existing TKIs. TKIs with low cardiac safety indices exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that vascular endothelial growth factor receptor 2 (VEGFR2)/platelet-derived growth factor receptor (PDGFR)-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. With phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Up-regulating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during cotreatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anticancer TKIs, and the results correlate with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.


Asunto(s)
Cardiotoxicidad/patología , Ensayos Analíticos de Alto Rendimiento/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Inhibidores de Proteínas Quinasas/toxicidad , Biomarcadores/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sarcómeros/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Nat Biomed Eng ; 1(10): 826-837, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30263871

RESUMEN

Many reprogramming methods can generate human induced pluripotent stem cells (hiPSCs) that closely resemble human embryonic stem cells (hESCs). This has led to assessments of how similar hiPSCs are to hESCs, by evaluating differences in gene expression, epigenetic marks and differentiation potential. However, all previous studies were performed using hiPSCs acquired from different laboratories, passage numbers, culturing conditions, genetic backgrounds and reprogramming methods, all of which may contribute to the reported differences. Here, by using high-throughput sequencing under standardized cell culturing conditions and passage number, we compare the epigenetic signatures (H3K4me3, H3K27me3 and HDAC2 ChIP-seq profiles) and transcriptome differences (by RNA-seq) of hiPSCs generated from the same primary fibroblast population by using six different reprogramming methods. We found that the reprogramming method impacts the resulting transcriptome and that all hiPSC lines could terminally differentiate, regardless of the reprogramming method. Moreover, by comparing the differences between the hiPSC and hESC lines, we observed a significant proportion of differentially expressed genes that could be attributed to polycomb repressive complex targets.

20.
J Am Coll Cardiol ; 68(19): 2086-2096, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27810048

RESUMEN

BACKGROUND: Brugada syndrome (BrS), a disorder associated with characteristic electrocardiogram precordial ST-segment elevation, predisposes afflicted patients to ventricular fibrillation and sudden cardiac death. Despite marked achievements in outlining the organ level pathophysiology of the disorder, the understanding of human cellular phenotype has lagged due to a lack of adequate human cellular models of the disorder. OBJECTIVES: The objective of this study was to examine single cell mechanism of Brugada syndrome using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS: This study recruited 2 patients with type 1 BrS carrying 2 different sodium voltage-gated channel alpha subunit 5 variants as well as 2 healthy control subjects. We generated iPSCs from their skin fibroblasts by using integration-free Sendai virus. We used directed differentiation to create purified populations of iPSC-CMs. RESULTS: BrS iPSC-CMs showed reductions in inward sodium current density and reduced maximal upstroke velocity of action potential compared with healthy control iPSC-CMs. Furthermore, BrS iPSC-CMs demonstrated increased burden of triggered activity, abnormal calcium (Ca2+) transients, and beating interval variation. Correction of the causative variant by genome editing was performed, and resultant iPSC-CMs showed resolution of triggered activity and abnormal Ca2+ transients. Gene expression profiling of iPSC-CMs showed clustering of BrS compared with control subjects. Furthermore, BrS iPSC-CM gene expression correlated with gene expression from BrS human cardiac tissue gene expression. CONCLUSIONS: Patient-specific iPSC-CMs were able to recapitulate single-cell phenotype features of BrS, including blunted inward sodium current, increased triggered activity, and abnormal Ca2+ handling. This novel human cellular model creates future opportunities to further elucidate the cellular disease mechanism and identify novel therapeutic targets.


Asunto(s)
Síndrome de Brugada/genética , Regulación de la Expresión Génica , Sistema de Conducción Cardíaco/fisiopatología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Canal de Sodio Activado por Voltaje NAV1.5/genética , ARN/genética , Adolescente , Adulto , Síndrome de Brugada/metabolismo , Síndrome de Brugada/patología , Diferenciación Celular , Electrocardiografía , Genotipo , Sistema de Conducción Cardíaco/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/biosíntesis , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...