Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 3186, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320626

RESUMEN

Biogenic amine neurotransmitters play a central role in metazoan biology, and both their chemical structures and cognate receptors are evolutionarily conserved. Their primary roles are in cell-to-cell signaling, as biogenic amines are not normally recruited for communication between separate individuals. Here, we show that in the nematode C. elegans, a neurotransmitter-sensing G protein-coupled receptor, TYRA-2, is required for avoidance responses to osas#9, an ascaroside pheromone that incorporates the neurotransmitter, octopamine. Neuronal ablation, cell-specific genetic rescue, and calcium imaging show that tyra-2 expression in the nociceptive neuron, ASH, is necessary and sufficient to induce osas#9 avoidance. Ectopic expression in the AWA neuron, which is generally associated with attractive responses, reverses the response to osas#9, resulting in attraction instead of avoidance behavior, confirming that TYRA-2 partakes in the sensing of osas#9. The TYRA-2/osas#9 signaling system represents an inter-organismal communication channel that evolved via co-option of a neurotransmitter and its cognate receptor.


Asunto(s)
Reacción de Prevención/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Comunicación Celular/fisiología , Octopamina/metabolismo , Receptores de Amina Biogénica/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Nociceptores/metabolismo , Receptores de Amina Biogénica/genética , Transducción de Señal
2.
J Dev Biol ; 7(2)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018525

RESUMEN

The complete structure and connectivity of the Caenorhabditis elegans nervous system ("mind of a worm") was first published in 1986, representing a critical milestone in the field of connectomics. The reconstruction of the nervous system (connectome) at the level of synapses provided a unique perspective of understanding how behavior can be coded within the nervous system. The following decades have seen the development of technologies that help understand how neural activity patterns are connected to behavior and modulated by sensory input. Investigations on the developmental origins of the connectome highlight the importance of role of neuronal cell lineages in the final connectivity matrix of the nervous system. Computational modeling of neuronal dynamics not only helps reconstruct the biophysical properties of individual neurons but also allows for subsequent reconstruction of whole-organism neuronal network models. Hence, combining experimental datasets with theoretical modeling of neurons generates a better understanding of organismal behavior. This review discusses some recent technological advances used to analyze and perturb whole-organism neuronal function along with developments in computational modeling, which allows for interrogation of both local and global neural circuits, leading to different behaviors. Combining these approaches will shed light into how neural networks process sensory information to generate the appropriate behavioral output, providing a complete understanding of the worm nervous system.

3.
Nat Commun ; 9(1): 1128, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555902

RESUMEN

Animals respond to predators by altering their behavior and physiological states, but the underlying signaling mechanisms are poorly understood. Using the interactions between Caenorhabditis elegans and its predator, Pristionchus pacificus, we show that neuronal perception by C. elegans of a predator-specific molecular signature induces instantaneous escape behavior and a prolonged reduction in oviposition. Chemical analysis revealed this predator-specific signature to consist of a class of sulfolipids, produced by a biochemical pathway required for developing predacious behavior and specifically induced by starvation. These sulfolipids are detected by four pairs of C. elegans amphid sensory neurons that act redundantly and recruit cyclic nucleotide-gated (CNG) or transient receptor potential (TRP) channels to drive both escape and reduced oviposition. Functional homology of the delineated signaling pathways and abolishment of predator-evoked C. elegans responses by the anti-anxiety drug sertraline suggests a likely conserved or convergent strategy for managing predator threats.


Asunto(s)
Caenorhabditis elegans/fisiología , Caenorhabditis elegans/parasitología , Lípidos/fisiología , Conducta Predatoria/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Femenino , Lípidos/química , Oviposición/fisiología , Conducta Predatoria/efectos de los fármacos , Rabdítidos/patogenicidad , Rabdítidos/fisiología , Células Receptoras Sensoriales/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Transducción de Señal/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/fisiología , Ácido gamma-Aminobutírico/fisiología
4.
Dev Cell ; 34(1): 108-18, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26096734

RESUMEN

The regulation of mRNA translation is of fundamental importance in biological mechanisms ranging from embryonic axis specification to the formation of long-term memory. POS-1 is one of several CCCH zinc-finger RNA-binding proteins that regulate cell fate specification during C. elegans embryogenesis. Paradoxically, pos-1 mutants exhibit striking defects in endo-mesoderm development but have wild-type distributions of SKN-1, a key determinant of endo-mesoderm fates. RNAi screens for pos-1 suppressors identified genes encoding the cytoplasmic poly(A)-polymerase homolog GLD-2, the Bicaudal-C homolog GLD-3, and the protein NEG-1. We show that NEG-1 localizes in anterior nuclei, where it negatively regulates endo-mesoderm fates. In posterior cells, POS-1 binds the neg-1 3' UTR to oppose GLD-2 and GLD-3 activities that promote NEG-1 expression and cytoplasmic lengthening of the neg-1 mRNA poly(A) tail. Our findings uncover an intricate series of post-transcriptional regulatory interactions that, together, achieve precise spatial expression of endo-mesoderm fates in C. elegans embryos.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Proteínas Nucleares/metabolismo , Poliadenilación/fisiología , ARN de Helminto/metabolismo , ARN Mensajero/metabolismo , Animales , Caenorhabditis elegans/embriología , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Germinativas/metabolismo , Mesodermo/metabolismo , ARN de Helminto/genética , Proteínas de Unión al ARN
5.
Semin Cell Dev Biol ; 33: 18-24, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24977334

RESUMEN

In the natural environment it is vital that organisms are capable of locating mates to reproduce and, consequently, increase the diversity of their gene pool. Many species make use of audio and visual communication for mate location. However, the more ancient form of chemical communication is used by all forms of life, from bacteria to mammals. In the past decade, much information has been discovered regarding pheromones in the nematode Caenorhabditis elegans. In this review, chemical signals that govern mating behavior in C. elegans will be discussed, from the existence and identification of mating cues, to the neurons involved in the behavioral response. Specifically, mate attraction is dictated by specific glycosides and side chains of the dideoxysugar ascarylose, a class of molecules known as ascarosides. Intriguingly, modifications of the ascarosides can dictate different behaviors such as male attraction, hermaphrodite attraction, and dauer formation. In general, interactions between core sensory neurons such as ASK and sex-specific neurons like CEM are critical for detecting these small molecules. These data reveal the existence of a complex, synergistic, chemical mating cue system between males and hermaphrodites in C. elegans, thereby highlighting the importance of mate attraction in a primarily hermaphroditic population.


Asunto(s)
Caenorhabditis elegans/fisiología , Feromonas/fisiología , Animales , Quimiotaxis , Señales (Psicología) , Glucolípidos/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Reproducción , Conducta Sexual Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...