Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38903062

RESUMEN

The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.

2.
Front Mol Biosci ; 11: 1368372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455766

RESUMEN

According to the fifth edition of the WHO Classification of Tumours of the Central Nervous System (CNS) published in 2021, grade 4 gliomas classification includes IDH-mutant astrocytomas and wild-type IDH glioblastomas. Unfortunately, despite precision oncology development, the prognosis for patients with grade 4 glioma remains poor, indicating an urgent need for better diagnostic and therapeutic strategies. Circulating miRNAs besides being important regulators of cancer development could serve as promising diagnostic biomarkers for patients with grade 4 glioma. Here, we propose a two-miRNA miR-362-3p and miR-6721-5p screening signature for serum for non-invasive classification of identified glioma cases into the highest-grade 4 and lower-grade gliomas. A total of 102 samples were included in this study, comprising 78 grade 4 glioma cases and 24 grade 2-3 glioma subjects. Using the NanoString platform, seven miRNAs were identified as differentially expressed (DE), which was subsequently confirmed via RT-qPCR analysis. Next, numerous combinations of DE miRNAs were employed to develop classification models. The dual panel of miR-362-3p and miR-6721-5p displayed the highest diagnostic value to differentiate grade 4 patients and lower grade cases with an AUC of 0.867. Additionally, this signature also had a high AUC = 0.854 in the verification cohorts by RT-qPCR and an AUC = 0.842 using external data from the GEO public database. The functional annotation analyses of predicted DE miRNA target genes showed their primary involvement in the STAT3 and HIF-1 signalling pathways and the signalling pathway of pluripotency of stem cells and glioblastoma-related pathways. For additional exploration of miRNA expression patterns correlated with glioma, we performed the Weighted Gene-Co Expression Network Analysis (WGCNA). We showed that the modules most associated with glioma grade contained as many as six DE miRNAs. In conclusion, this study presents the first evidence of serum miRNA expression profiling in adult-type diffuse glioma using a classification based on the WHO 2021 guidelines. We expect that the discovered dual miR-362-3p and miR-6721-5p signatures have the potential to be utilised for grading gliomas in clinical applications.

3.
Sci Rep ; 13(1): 19287, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935712

RESUMEN

Epithelial ovarian cancer (EOC) is one of the leading cancers in women, with high-grade serous ovarian cancer (HGSOC) being the most common and lethal subtype of this disease. A vast majority of HGSOC are diagnosed at the late stage of the disease when the treatment and total recovery chances are low. Thus, there is an urgent need for novel, more sensitive and specific methods for early and routine HGSOC clinical diagnosis. In this study, we performed miRNA expression profiling using the NanoString miRNA assay in 34 serum samples from patients with HGSOC and 36 healthy women. We identified 13 miRNAs that were differentially expressed (DE). For additional exploration of expression patterns correlated with HGSOC, we performed weighted gene co-expression network analysis (WGCNA). As a result, we showed that the module most correlated with tumour size, nodule and metastasis contained 8 DE miRNAs. The panel including miR-1246 and miR-150-5p was identified as a signature that could discriminate HGSOC patients with AUCs of 0.98 and 1 for the training and test sets, respectively. Furthermore, the above two-miRNA panel had an AUC = 0.946 in the verification cohorts of RT-qPCR data and an AUC = 0.895 using external data from the GEO public database. Thus, the model we developed has the potential to markedly improve the diagnosis of ovarian cancer.


Asunto(s)
Cistadenocarcinoma Seroso , MicroARNs , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Carcinoma Epitelial de Ovario/diagnóstico , Carcinoma Epitelial de Ovario/genética , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Biomarcadores de Tumor
5.
PLoS Genet ; 18(11): e1010367, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36327219

RESUMEN

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Asunto(s)
COVID-19 , Exoma , Humanos , Exoma/genética , Estudio de Asociación del Genoma Completo , COVID-19/genética , Predisposición Genética a la Enfermedad , Receptor Toll-Like 7/genética , SARS-CoV-2/genética
6.
Front Genet ; 13: 979377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36134023

RESUMEN

Introduction: The definition of ultra-rare disease in terms of its prevalence varies between the sources, usually amounting to ca. 1 in 1.000.000 births. Nonetheless, there are even less frequent disorders, such as Ogden syndrome, which up to this day was diagnosed in less than 10 patients worldwide. They present typically with a variety of developmental defects, including postnatal growth retardation, psychomotor delay and hypotonia. This disorder is caused by the heterozygous mutations in NAA10 gene, which encodes N-alpha-acetyltransferase 10, involved in protein biosynthesis. Therefore, Ogden syndrome belongs to the broader group of genetic disorders, collectively described as NAA10-related syndrome. Case report: We present a case of a Polish male infant, born in 39. GW with c-section due to the pathological cardiotocography signal. Hypotrophy (2400 g) and facial dysmorphism were noted in the physical examination. From the first minute, the child required mechanical ventilation - a nasal continuous positive airway pressure. For the first 27 days, the patient was treated in a neonatal intensive care unit, where a series of examinations were conducted. On their basis, the presence of the following defects was determined: muscular ventricular septal defects, patent foramen ovale, pectus excavatum, clubfoot and axial hypotonia. Child was then consequently referred to the genetic clinic for counselling. Results of the tests allowed the diagnosis of Ogden syndrome. In the following months the patient's condition worsened due to the numerous pulmonary infections. Despite the advanced treatment including the variety of medications, the patient eventually died at the age of 10 months. Conclusion: This case report presents a tenth patient diagnosed with Ogden syndrome reported worldwide. It expands the morphologic and clinical phenotype, emphasizing the possible severity of pneumonological disorders in these patients, which may pose a greater threat to a child's life than more frequently described cardiovascular dysfunctions associated with this syndrome.

7.
Cells ; 11(5)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269485

RESUMEN

Somatic embryogenesis (SE), which is a process that involves the in vitro-induced embryogenic reprogramming of plant somatic cells, requires dynamic changes in the cell transcriptome. These changes are fine-tuned by many genetic and epigenetic factors, including posttranslational histone modifications such as histone acetylation. Antagonistically acting enzymes, histone acetyltransferases (HATs) and deacetylases (HDACs), which control histone acetylation in many developmental processes, are believed to control SE. However, the function of specific HAT/HDACs and the genes that are subjected to histone acetylation-mediated regulation during SE have yet to be revealed. Here, we present the global and gene-specific changes in histone acetylation in Arabidopsis explants that are undergoing SE. In the TSA (trichostatin A)-induced SE, we demonstrate that H3 and H4 acetylation might control the expression of the critical transcription factor (TF) genes of a vital role in SE, including LEC1, LEC2 (LEAFY COTYLEDON 1; 2), FUS3 (FUSCA 3) and MYB118 (MYB DOMAIN PROTEIN 118). Within the HATs and HDACs, which mainly positively regulate SE, we identified HDA19 as negatively affecting SE by regulating LEC1, LEC2 and BBM. Finally, we provide some evidence on the role of HDA19 in the histone acetylation-mediated regulation of LEC2 during SE. Our results reveal an essential function of histone acetylation in the epigenetic mechanisms that control the TF genes that play critical roles in the embryogenic reprogramming of plant somatic cells. The results implicate the complexity of Hac-related gene regulation in embryogenic induction and point to differences in the regulatory mechanisms that are involved in auxin- and TSA-induced SE.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Clin Med ; 10(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768410

RESUMEN

With a growing number of proved therapies and clinical trials for many lysosomal storage disorders (LSDs), a lot of hope for many patients and families exists. However, there are sometimes cases with poor prognosis, fatal outcomes when our efforts must be directed towards a prompt and correct genetic diagnosis, which offers the only possibility of providing the family with appropriate prevention and treatment. To address this issue, in this article, we present the clinical and genetic hallmarks of the lethal form of Gaucher disease (PLGD) and discuss the potential management. We hope that this will draw attention to its specific manifestations (such as collodion-baby phenotype, ichthyosis, arthrogryposis), which differ from best-known GD complications and ensure appropriate diagnostic assessment to provide families at risk with reliable counselling and treatment to avoid the medical complication of GD.

9.
Front Genet ; 12: 675260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220949

RESUMEN

Aluminum (Al) toxicity is considered to be the most harmful abiotic stress in acidic soils that today comprise more than 50% of the world's arable lands. Barley belongs to a group of crops that are most sensitive to Al in low pH soils. We present the RNA-seq analysis of root meristems of barley seedlings grown in hydroponics at optimal pH (6.0), low pH (4.0), and low pH with Al (10 µM of bioavailable Al3+ ions). Two independent experiments were conducted: with short-term (24 h) and long-term (7 days) Al treatment. In the short-term experiment, more genes were differentially expressed (DEGs) between root meristems grown at pH = 6.0 and pH = 4.0, than between those grown at pH = 4.0 with and without Al treatment. The genes upregulated by low pH were associated mainly with response to oxidative stress, cell wall organization, and iron ion binding. Among genes upregulated by Al, overrepresented were those related to response to stress condition and calcium ion binding. In the long-term experiment, the number of DEGs between hydroponics at pH = 4.0 and 6.0 were lower than in the short-term experiment, which suggests that plants partially adapted to the low pH. Interestingly, 7 days Al treatment caused massive changes in the transcriptome profile. Over 4,000 genes were upregulated and almost 2,000 genes were downregulated by long-term Al stress. These DEGs were related to stress response, cell wall development and metal ion transport. Based on our results we can assume that both, Al3+ ions and low pH are harmful to barley plants. Additionally, we phenotyped the root system of barley seedlings grown in the same hydroponic conditions for 7 days at pH = 6.0, pH = 4.0, and pH = 4.0 with Al. The results correspond to transcriptomic data and show that low pH itself is a stress factor that causes a significant reduction of root growth and the addition of aluminum further increases this reduction. It should be noted that in acidic arable lands, plants are exposed simultaneously to both of these stresses. The presented transcriptome analysis may help to find potential targets for breeding barley plants that are more tolerant to such conditions.

10.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557095

RESUMEN

Environmental stress is one of the most important factors affecting plant growth and development. Recent studies have shown that epigenetic mechanisms, such as DNA methylation, play a key role in adapting plants to stress conditions. Here, we analyzed the dynamics of changes in the level of DNA methylation in Arabidopsis thaliana (L.) Heynh. (Brassicaceae) under the influence of heat stress. For this purpose, whole-genome sequencing of sodium bisulfite-treated DNA was performed. The analysis was performed at seven time points, taking into account the control conditions, heat stress, and recovery to control conditions after the stress treatment was discontinued. In our study we observed decrease in the level of DNA methylation under the influence of heat stress, especially after returning to control conditions. Analysis of the gene ontology enrichment and regulatory pathways showed that genes characterized by differential DNA methylation are mainly associated with stress response, including heat stress. These are the genes encoding heat shock proteins and genes associated with translation regulation. A decrease in the level of DNA methylation in such specific sites suggests that under the influence of heat stress we observe active demethylation phenomenon rather than passive demethylation, which is not locus specific.


Asunto(s)
Arabidopsis/fisiología , Desmetilación del ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Estrés Fisiológico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Islas de CpG , Epigenómica/métodos , Genoma de Planta , Genómica/métodos
11.
Ecotoxicol Environ Saf ; 194: 110434, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32155483

RESUMEN

A factor that may significantly increase the efficacy of phytoextraction is soil bioaugmentation with specific bacteria, which can alter the composition of rhizospheric and endophytic bacterial communities. The aim of this study was to compare the effect of soil treatment with living (bioaugmentation) and dead (control) cells of the plant growth-promoting metal-resistant endophytic strain Pseudomonas sp. H15 on the bacterial community composition in the rhizo- and endo-sphere of white mustard during enhanced phytoextraction. The bacterial communities in the rhizosphere were dominated (51.7-68.2%) by Proteobacteria, regardless of the soil treatment or sampling point. A temporary increase in the number of sequences belonging to Gammaproteobacteria (up to 37.3%) was only observed 24 h after the soil treatment with living Pseudomonas sp. H15 cells, whereas for the remaining samples, the relative abundance of this class did not exceed 7.1%. The relative abundance of Proteobacteria in the endosphere of the roots, stems, and leaves of white mustard was higher in the control than in bioaugmented plants. The most pronounced dominance of the Gammaproteobacteria sequences was observed in the stems and leaves of the control plants at the first sampling point, which strongly indicates the ability of the plants to rapidly uptake DNA from soil and translocate it to the aboveground parts of the plants. Additionally, the bioaugmentation of the soil caused a diverse shift in the bacterial communities in the rhizo- and endo-sphere of white mustard compared to control. The most distinct differences, which were dependent on the treatment, were observed in the endosphere of plants at the beginning of the experiment and decreased over time. These results indicate that the rhizo- and endo-biome of white mustard reacts to soil bioaugmentation and may influence the efficiency of bacterial-assisted phytoextraction.


Asunto(s)
Biodegradación Ambiental , Pseudomonas/metabolismo , Sinapis/metabolismo , Microbiología del Suelo , Bacterias/efectos de los fármacos , Brassica , Desarrollo de la Planta , Hojas de la Planta/química , Raíces de Plantas/química , Pseudomonas/efectos de los fármacos , Rizosfera , Suelo , Contaminantes del Suelo/análisis
12.
Cancers (Basel) ; 12(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877723

RESUMEN

Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies consisting essentially of adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Although the diagnosis and treatment of ADC and SCC have been greatly improved in recent decades, there is still an urgent need to identify accurate transcriptome profile associated with the histological subtypes of NSCLC. The present study aims to identify the key dysregulated pathways and genes involved in the development of lung ADC and SCC and to relate them with the clinical traits. The transcriptional changes between tumour and normal lung tissues were investigated by RNA-seq. Gene ontology (GO), canonical pathways analysis with the prediction of upstream regulators, and weighted gene co-expression network analysis (WGCNA) to identify co-expressed modules and hub genes were used to explore the biological functions of the identified dysregulated genes. It was indicated that specific gene signatures differed significantly between ADC and SCC related to the distinct pathways. Of identified modules, four and two modules were the most related to clinical features in ADC and SCC, respectively. CTLA4, MZB1, NIP7, and BUB1B in ADC, as well as GNG11 and CCNB2 in SCC, are novel top hub genes in modules associated with tumour size, SUVmax, and recurrence-free survival. Our research provides a more effective understanding of the importance of biological pathways and the relationships between major genes in NSCLC in the perspective of searching for new molecular targets.

13.
Methods Mol Biol ; 1900: 253-268, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30460570

RESUMEN

Detailed DNA methylation analyses in plant species with large and highly repetitive genomes can be challenging as well as costly. Here, we describe a complete protocol for a high-throughput DNA methylation changes analysis using Methylation-Sensitive Amplification Polymorphism Sequencing (MSAP-Seq; Chwialkowska et al., Front Plant Sci. 8: 2056 (2017)). This method allows detailed information about DNA methylation changes in large and complex genomes to be obtained at a relatively low cost. MSAP-Seq is based on conventional MSAP marker analysis and employs all its basic steps such as restriction cleavage with methylation-sensitive restriction enzyme, ligation of universal adapters, and PCR amplification. However, the traditional gel-based amplicon separation is replaced by direct, global sequencing with next-generation sequencing (NGS) methods. Consequently, MSAP-Seq allows for parallel analysis of hundreds of thousands of different CCGG sites and evaluation of their DNA methylation state. This technique especially targets to genic regions, so it is well suited for large genomes with low gene density, such as barley and other plants with large genomes.


Asunto(s)
Metilación de ADN/genética , Genoma de Planta , Hordeum/genética , Secuencia de Bases , Enzimas de Restricción del ADN/metabolismo , Análisis de Datos , Microesferas , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sonicación , Especificidad de la Especie
14.
Aging (Albany NY) ; 10(10): 2832-2854, 2018 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-30348905

RESUMEN

Human DNA-methylation data have been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Recent studies demonstrate that similar epigenetic clocks for mice (Mus Musculus) can be slowed by gold standard anti-aging interventions such as calorie restriction and growth hormone receptor knock-outs. Using DNA methylation data from previous publications with data collected in house for a total 1189 samples spanning 193,651 CpG sites, we developed 4 novel epigenetic clocks by choosing different regression models (elastic net- versus ridge regression) and by considering different sets of CpGs (all CpGs vs highly conserved CpGs). We demonstrate that accurate age estimators can be built on the basis of highly conserved CpGs. However, the most accurate clock results from applying elastic net regression to all CpGs. While the anti-aging effect of calorie restriction could be detected with all types of epigenetic clocks, only ridge regression based clocks replicated the finding of slow epigenetic aging effects in dwarf mice. Overall, this study demonstrates that there are trade-offs when it comes to epigenetic clocks in mice. Highly accurate clocks might not be optimal for detecting the beneficial effects of anti-aging interventions.


Asunto(s)
Relojes Biológicos/genética , Metilación de ADN , Epigénesis Genética , Longevidad/genética , Factores de Edad , Animales , Relojes Biológicos/efectos de los fármacos , Restricción Calórica , Islas de CpG , Metilación de ADN/efectos de los fármacos , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Enanismo/genética , Enanismo/metabolismo , Epigénesis Genética/efectos de los fármacos , Femenino , Estudio de Asociación del Genoma Completo , Longevidad/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Sirolimus/farmacología , Especificidad de la Especie
15.
Ecotoxicol Environ Saf ; 147: 461-470, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28898805

RESUMEN

The reproduction of pest insects is a continuously ongoing issue, especially in the environmental pollution context. Natural or artificial stressing factors enforce a kind of trade-off, most often between growth/survival and reproduction, which improves fitness of the organism. Harmful factors, such as cadmium, can affect the vitellogenesis leading to reduction of yolk synthesis and egg production. The aim of this study was to assess whether 130-generational selection to cadmium in food might have induced change in vitellogenesis of Spodoptera exigua. We analyzed the level of Vg gene expression in S. exigua from the control and the cadmium strain at regular time intervals within 48h after eclosion. The full sequence of Vg gene was also compared between strains. The vitellogenin gene expression in both strains was time-dependent. This dependence was more visible in the control strain. In the cadmium strain the vitellogenin expression was significantly lower, comparing with the control strain in the first day after eclosion but increased significantly in the second day. The sequenced CDS (5286bp long) of the control and the cadmium strains were translated into protein sequences containing both 1761 aa. The protein sequences comparison revealed that there is one amino acid change at aa position 1282. Multiple alignments of six orthologous proteins from different species showed that amino acid change is located in the conserved position. Long-lasting exposure to cadmium resulted in permanent mutation in vitellogenin gene. We do not know yet if the mutation can improve fitness of the cadmium-selected insects. However, we can suppose that the mutation is neutral or even beneficial. The mutation and most probably additional effects of cadmium exposure have an influence on the vitellogenin expression. Some modification in the expression of the vitellogenin receptor are also likely to be important.


Asunto(s)
Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Expresión Génica/efectos de los fármacos , Spodoptera/efectos de los fármacos , Vitelogénesis/efectos de los fármacos , Vitelogeninas/genética , Secuencia de Aminoácidos , Animales , Proteínas del Huevo/genética , Femenino , Mutación , Receptores de Superficie Celular/genética , Spodoptera/genética , Factores de Tiempo , Vitelogénesis/genética
16.
Front Plant Sci ; 8: 2056, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250096

RESUMEN

Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.

17.
J Exp Bot ; 67(4): 1109-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26739862

RESUMEN

One of the strategies of plant adaptation to stress is the modulation of gene expression, which may result from the regulation of DNA methylation. This study attempted to characterize and compare the barley methylome of leaves and roots under water-deficiency treatment and in the subsequent rewatering phase. Our results, obtained using methylation-sensitive amplification polymorphism sequencing analysis, indicated that the overall DNA methylation level in the barley genome was high and in general stable under water-deficiency conditions. Nevertheless, numerous differentially methylated sites (DMSs) were induced by stress in the leaves and roots. Equal proportions of novel stress-induced methylation and demethylation events were observed within the genes in the leaves, but new methylations dominated in the roots. Repetitive elements preferentially underwent demethylation in the leaves and novel methylations in the roots. Importantly, rewatering and plant recovery resulted in the reversibility of the majority of stress-induced methylation events, but this process was more efficient in the leaves than in the roots. Different biological processes were enriched within the subsets of the DMSs that were identified in the genic regions of leaves and roots. We assume that the organ specificity of the methylome changes in response to water deficiency might be an important regulatory mechanism that leads to multi-level mechanisms of stress tolerance in barley.


Asunto(s)
Metilación de ADN , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Proteínas de Plantas/genética , Agua/metabolismo , Citosina/metabolismo , ADN de Plantas/metabolismo , Sequías , Hordeum/metabolismo , Especificidad de Órganos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Análisis de Secuencia de ADN , Estrés Fisiológico
18.
J Exp Bot ; 67(4): 1079-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26585228

RESUMEN

An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar 'Karat' and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions.


Asunto(s)
ADN de Plantas/genética , Sequías , Hordeum/fisiología , Raíces de Plantas/fisiología , Transcriptoma , ADN de Plantas/metabolismo , Perfilación de la Expresión Génica , Hordeum/genética , Análisis de Secuencia de ADN
19.
Biomed Eng Online ; 12: 68, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23835039

RESUMEN

INTRODUCTION: The analysis of polyacrylamide gels is currently carried out manually or automatically. In the automatic method, there are limitations related to the acceptable degree of distortion of lane and band continuity. The available software cannot deal satisfactorily with this type of situations. Therefore, the paper presents an original image analysis method devoid of the aforementioned drawbacks. MATERIAL: This paper examines polyacrylamide gel images from Li-Cor DNA Sequencer 4300S resulting from the use of the electrophoretic separation of DNA fragments. The acquired images have a resolution dependent on the length of the analysed DNA fragments and typically it is MG×NG=3806×1027 pixels. The images are saved in TIFF format with a grayscale resolution of 16 bits/pixel. The presented image analysis method was performed on gel images resulting from the analysis of DNA methylome profiling in plants exposed to drought stress, carried out with the MSAP (Methylation Sensitive Amplification Polymorphism) technique. RESULTS: The results of DNA polymorphism analysis were obtained in less than one second for the Intel Core™ 2 Quad CPU Q9300@2.5GHz, 8GB RAM. In comparison with other known methods, specificity was 0.95, sensitivity = 0.94 and AUC (Area Under Curve) = 0.98. CONCLUSIONS: It is possible to carry out this method of DNA polymorphism analysis on distorted images of polyacrylamide gels. The method is fully automatic and does not require any operator intervention. Compared with other methods, it produces the best results and the resulting image is easy to interpret. The presented method of measurement is used in the practical analysis of polyacrylamide gels in the Department of Genetics at the University of Silesia in Katowice, Poland.


Asunto(s)
ADN/genética , ADN/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida/métodos , Polimorfismo Genético , Automatización , Análisis de Secuencia de ADN
20.
PLoS Genet ; 9(3): e1003388, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555297

RESUMEN

The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.


Asunto(s)
Diploidia , Evolución Molecular , Haploidia , Saccharomyces cerevisiae/genética , Evolución Biológica , Tamaño de la Célula/efectos de los fármacos , Cromosomas/efectos de los fármacos , Cromosomas/genética , Cobre/toxicidad , Ecología , Interacción Gen-Ambiente , Genes del Tipo Sexual de los Hongos/efectos de los fármacos , Genes del Tipo Sexual de los Hongos/genética , Genotipo , Litio/toxicidad , Reproducción/efectos de los fármacos , Reproducción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...