Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glycoconj J ; 40(6): 655-668, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38100017

RESUMEN

Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.


Asunto(s)
Gangliósido G(M1) , Galactosa , Gangliósido G(M1)/química , Ácido N-Acetilneuramínico , Oligosacáridos/química
2.
FEBS Open Bio ; 13(12): 2324-2341, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37885330

RESUMEN

Alterations in glycosphingolipid metabolism have been linked to the pathophysiological mechanisms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Accordingly, administration of GM1, a sialic acid-containing glycosphingolipid, is protective against neuronal damage and supports neuronal homeostasis, with these effects mediated by its bioactive component, the oligosaccharide head (GM1-OS). Here, we add new evidence to the therapeutic efficacy of GM1 in ALS: Its administration to WT and SOD1G93A motor neurons affected by glutamate-induced excitotoxicity significantly increased neuronal survival and preserved neurite networks, counteracting intracellular protein accumulation and mitochondria impairment. Importantly, the GM1-OS faithfully replicates GM1 activity, emphasizing that even in ALS the protective function of GM1 strictly depends on its pentasaccharide.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/metabolismo , Ácido Glutámico , Enfermedades Neurodegenerativas/metabolismo , Superóxido Dismutasa/metabolismo , Neuronas Motoras/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37330108

RESUMEN

Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models. Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation. These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/química , Oligosacáridos/farmacología
4.
Biomedicines ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37238977

RESUMEN

Past evidence has shown that the exogenous administration of GM1 ganglioside slowed neuronal death in preclinical models of Parkinson's disease, a neurodegenerative disorder characterized by the progressive loss of dopamine-producing neurons: however, the physical and chemical properties of GM1 (i.e., amphiphilicity) limited its clinical application, as the crossing of the blood-brain barrier is denied. Recently, we demonstrated that the GM1 oligosaccharide head group (GM1-OS) is the GM1 bioactive portion that, interacting with the TrkA-NGF complex at the membrane surface, promotes the activation of a multivariate network of intracellular events regulating neuronal differentiation, protection, and reparation. Here, we evaluated the GM1-OS neuroprotective potential against the Parkinson's disease-linked neurotoxin MPTP, which destroys dopaminergic neurons by affecting mitochondrial bioenergetics and causing ROS overproduction. In dopaminergic and glutamatergic primary cultures, GM1-OS administration significantly increased neuronal survival, preserved neurite network, and reduced mitochondrial ROS production enhancing the mTOR/Akt/GSK3ß pathway. These data highlight the neuroprotective efficacy of GM1-OS in parkinsonian models through the implementation of mitochondrial function and reduction in oxidative stress.

5.
Neurochem Res ; 48(6): 1783-1797, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36695984

RESUMEN

Failure of the immune system to discriminate myelin components from foreign antigens plays a critical role in the pathophysiology of multiple sclerosis. In fact, the appearance of anti-myelin autoantibodies, targeting both proteins and glycolipids, is often responsible for functional alterations in myelin-producing cells in this disease. Nevertheless, some of these antibodies were reported to be beneficial for remyelination. Recombinant human IgM22 (rHIgM22) binds to myelin and to the surface of O4-positive oligodendrocytes, and promotes remyelination in mouse models of chronic demyelination. Interestingly, the identity of the antigen recognized by this antibody remains to be elucidated. The preferential binding of rHIgM22 to sulfatide-positive cells or tissues suggests that sulfatide might be part of the antigen pattern recognized by the antibody, however, cell populations lacking sulfatide expression are also responsive to rHIgM22. Thus, we assessed the binding of rHIgM22 in vitro to purified lipids and lipid extracts from various sources to identify the antigen(s) recognized by this antibody. Our results show that rHIgM22 is indeed able to bind both sulfatide and its deacylated form, whereas no significant binding for other myelin sphingolipids has been detected. Remarkably, binding of rHIgM22 to sulfatide in lipid monolayers can be positively or negatively regulated by the presence of other lipids. Moreover, rHIgM22 also binds to phosphatidylinositol, phosphatidylserine and phosphatidic acid, suggesting that not only sulfatide, but also other membrane lipids might play a role in the binding of rHIgM22 to oligodendrocytes and to other cell types not expressing sulfatide.


Asunto(s)
Remielinización , Animales , Humanos , Ratones , Inmunoglobulina M , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Lípidos/inmunología
6.
FEBS Lett ; 596(24): 3124-3132, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36331354

RESUMEN

The interactions between gangliosides and proteins belonging to the same or different lipid domains and their influence on physiological and pathological states have been analysed in detail. A well-known factor impacting on lipid-protein interactions and their biological outcomes is the dynamic composition of plasma membrane. This review focuses on GM1 and GM3 gangliosides because they are an integral part of protein-receptor complexes and dysregulation of their concentration shows a direct correlation with the onset of pathological conditions. We first discuss the interaction between GM3 and insulin receptor in relation to insulin responses, with an increase in GM3 correlating with the onset of metabolic dysfunction. Next, we describe the case of the GM1-TrkA interaction, relevant to nerve-cell differentiation and homeostasis as deficiency in plasma-membrane GM1 is known to promote neurodegeneration. These two examples highlight the fact that interactions between gangliosides and receptor proteins within the plasma membrane are crucial in controlling cell signalling and pathophysiological cellular states.


Asunto(s)
Gangliósido G(M1) , Gangliósidos , Humanos , Gangliósidos/metabolismo , Gangliósido G(M1)/metabolismo , Receptor de Insulina/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Gangliósido G(M3)/metabolismo , Microdominios de Membrana/metabolismo
7.
Int J Biochem Cell Biol ; 145: 106184, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217188

RESUMEN

Galactocerebrosidase (GALC) hydrolyses galactose residues from various substrates, including galactosylceramide, psychosine (galactosylsphingosine), and lactosylceramide. Its severe deficiency has been associated with the accumulation of psychosine, a toxic molecule with detergent-like features, which alters membrane structures and signalling pathways, inducing the death of oligodendrocytes and a sequence of events in the nervous system that explain the appearance of many clinical signs typical of Krabbe disease. Nevertheless, new evidence suggests the existence of other possible links among GALC action, myelination, and myelin stability, apart from psychosine release. In this study, we demonstrated that lactosylceramide metabolism is impaired in fibroblasts isolated from patients with Krabbe disease in the absence of psychosine accumulation. This event is responsible for the aberrant and constitutive activation of the AKT/prolin-rich AKT substrate of 40 kDa (PRAS40) signalling axis, inducing B cell lymphoma 2 (BCL2) overexpression and glycogen synthase kinase 3 beta (GSK-3ß) inhibition. In addition, nuclear factor E2-related factor 2 (NRF2) showed increased nuclear translocation. Due to the relevance of these molecular alterations in neurodegeneration, lactosylceramide increase should be evaluated as a novel marker of Krabbe disease, and because of its significant connections with signalling pathways.


Asunto(s)
Lactosilceramidos , Leucodistrofia de Células Globoides , Proteínas Adaptadoras Transductoras de Señales , Glucógeno Sintasa Quinasa 3 beta , Humanos , Lactosilceramidos/metabolismo , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patología , Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2 , Psicosina/metabolismo
8.
Community Ment Health J ; 58(6): 1207-1213, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35066735

RESUMEN

People with serious mental illness (SMI) are frequently unemployed, despite their willingness to work. Several employment interventions approaches have proven efficacy; however, work integration rates for people with SMI continue to be low. In total, 145 participants with a SMI completed a survey, answering questions regarding their personal information, work history, whether they received supports towards work integration, and their functional level. In addition, clinical records were accessed to verify and complete clinical history. A quantitative descriptive approach was used to analyze the data. No significant differences were found between those who were working and who were not, based on age, gender, educational level, living situation, and suicide risk. Those who were working presented higher levels of functional capacity than those who were not working. Factors associated with employment outcomes continue to remain unclear, adding value to the role that the different supports towards work integration may have.


Asunto(s)
Trastornos Mentales , Escolaridad , Empleo , Humanos , Trastornos Mentales/terapia , Encuestas y Cuestionarios , Desempleo
9.
EMBO J ; 39(12): e101732, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32378734

RESUMEN

Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression.


Asunto(s)
Gangliósido G(M3)/metabolismo , Monocitos/metabolismo , Obesidad/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Animales , Gangliósido G(M3)/química , Gangliósido G(M3)/genética , Células HEK293 , Humanos , Ratones , Ratones Mutantes , Monocitos/química , Obesidad/genética , Multimerización de Proteína , Receptor Toll-Like 4/química , Receptor Toll-Like 4/genética
10.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325905

RESUMEN

Ganglioside GM1 (GM1) has been reported to functionally recover degenerated nervous system in vitro and in vivo, but the possibility to translate GM1's potential in clinical settings is counteracted by its low ability to overcome the blood-brain barrier (BBB) due to its amphiphilic nature. Interestingly, the soluble and hydrophilic GM1-oligosaccharide (OligoGM1) is able to punctually replace GM1 neurotrophic functions alone, both in vitro and in vivo. In order to take advantage of OligoGM1 properties, which overcome GM1's pharmacological limitations, here we characterize the OligoGM1 brain transport by using a human in vitro BBB model. OligoGM1 showed a 20-fold higher crossing rate than GM1 and time-concentration-dependent transport. Additionally, OligoGM1 crossed the barrier at 4 °C and in inverse transport experiments, allowing consideration of the passive paracellular route. This was confirmed by the exclusion of a direct interaction with the active ATP-binding cassette (ABC) transporters using the "pump out" system. Finally, after barrier crossing, OligoGM1 remained intact and able to induce Neuro2a cell neuritogenesis by activating the TrkA pathway. Importantly, these in vitro data demonstrated that OligoGM1, lacking the hydrophobic ceramide, can advantageously cross the BBB in comparison with GM1, while maintaining its neuroproperties. This study has improved the knowledge about OligoGM1's pharmacological potential, offering a tangible therapeutic strategy.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Gangliósido G(M1)/metabolismo , Transporte Biológico , Supervivencia Celular , Células Endoteliales , Humanos , Oligosacáridos/metabolismo , Permeabilidad
11.
Glycoconj J ; 37(3): 329-343, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198666

RESUMEN

It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and neuroprotective properties of GM1 ganglioside. In addition to this, differently from GM1, GM1-oligosaccharide is not taken up by the cells, remaining solubilized into the extracellular environment interacting with cell surface proteins. Those characteristics make GM1-oligosaccharide a good tool to study the properties of the endogenous GM1, avoiding to interfere with the ganglioside natural metabolic pathway. In this study, we show that GM1-oligosaccharide administered to mice cerebellar granule neurons by interacting with cell surface induces TrkA-MAP kinase pathway activation enhancing neuron clustering, arborization and networking. Accordingly, in the presence of GM1-oligosaccharide, neurons show a higher phosphorylation rate of FAK and Src proteins, the intracellular key regulators of neuronal motility. Moreover, treated cells express increased level of specific neuronal markers, suggesting an advanced stage of maturation compared to controls. In parallel, we found that in the presence of GM1-oligosaccharide, neurons accelerate the expression of complex gangliosides and reduce the level of the simplest ones, displaying the typical ganglioside pattern of mature neurons. Our data confirms the specific role of GM1 in neuronal differentiation and maturation, determined by its oligosaccharide portion. GM1-oligosacchairide interaction with cell surface receptors triggers the activation of intracellular biochemical pathways responsible for neuronal migration, dendrites emission and axon growth.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Gangliósido G(M1)/farmacología , Gangliósidos/metabolismo , Neuronas/efectos de los fármacos , Animales , Diferenciación Celular/fisiología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Femenino , Gangliósido G(M1)/análisis , Gangliósido G(M1)/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptor trkA/metabolismo
12.
Sci Rep ; 9(1): 19330, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852959

RESUMEN

Given the recent in vitro discovery that the free soluble oligosaccharide of GM1 is the bioactive portion of GM1 for neurotrophic functions, we investigated its therapeutic potential in the B4galnt1+/- mice, a model of sporadic Parkinson's disease. We found that the GM1 oligosaccharide, systemically administered, reaches the brain and completely rescues the physical symptoms, reduces the abnormal nigral α-synuclein content, restores nigral tyrosine hydroxylase expression and striatal neurotransmitter levels, overlapping the wild-type condition. Thus, this study supports the idea that the Parkinson's phenotype expressed by the B4galnt1+/- mice is due to a reduced level of neuronal ganglioside content and lack of interactions between the oligosaccharide portion of GM1 with specific membrane proteins. It also points to the therapeutic potential of the GM1 oligosaccharide for treatment of sporadic Parkinson's disease.


Asunto(s)
N-Acetilgalactosaminiltransferasas/metabolismo , Oligosacáridos/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Fuerza de la Mano , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neurotransmisores/metabolismo , Oligosacáridos/farmacología , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/enzimología , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/metabolismo
13.
Methods Mol Biol ; 1804: 311-322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29926416

RESUMEN

In this chapter, we present the preparation of gangliosides isotopically labelled with 3H or 14C. The methods do not present specific difficulties and can be used in any radiochemical laboratory. Some procedures can be applied to both gangliosides and neutral glycosphingolipids.


Asunto(s)
Gangliósidos/metabolismo , Radiactividad , Acetilación , Radioisótopos de Carbono/metabolismo , Ceramidas/metabolismo , Ácidos Grasos/metabolismo , Gangliósidos/química , Oligosacáridos/metabolismo , Coloración y Etiquetado , Tritio/metabolismo
14.
J Am Soc Mass Spectrom ; 29(6): 1308-1318, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29752599

RESUMEN

Gangliosides, as plasma membrane-associated sialylated glycolipids, are antigenic structures and they serve as ligands for adhesion proteins of pathogens, for toxins of bacteria, and for endogenous proteins of the host. The detectability by carbohydrate-binding proteins of glycan antigens and ligands on glycolipids can be influenced by the differing lipid moieties. To investigate glycan sequences of gangliosides as recognition structures, we have underway a program of work to develop a "gangliome" microarray consisting of isolated natural gangliosides and neoglycolipids (NGLs) derived from glycans released from them, and each linked to the same lipid molecule for arraying and comparative microarray binding analyses. Here, in the first phase of our studies, we describe a strategy for high-sensitivity assignment of the tetrasaccharide backbones and application to identification of eight of monosialylated glycans released from bovine brain gangliosides. This approach is based on negative-ion electrospray mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) of the desialylated glycans. Using this strategy, we have the data on backbone regions of four minor components among the monosialo-ganglioside-derived glycans; these are of the ganglio-, lacto-, and neolacto-series. Graphical abstract.


Asunto(s)
Química Encefálica , Gangliósidos/química , Ácido N-Acetilneuramínico/química , Oligosacáridos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Secuencia de Carbohidratos , Bovinos , Gangliósidos/análisis , Ácido N-Acetilneuramínico/análisis , Oligosacáridos/análisis , Polisacáridos/análisis , Polisacáridos/química
15.
Nat Commun ; 9(1): 1787, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725010

RESUMEN

In chronic lymphocytic leukemia (CLL), the non-hematopoietic stromal microenvironment plays a critical role in promoting tumor cell recruitment, activation, survival, and expansion. However, the nature of the stromal cells and molecular pathways involved remain largely unknown. Here, we demonstrate that leukemic B lymphocytes induce the activation of retinoid acid synthesis and signaling in the microenvironment. Inhibition of RA-signaling in stromal cells causes deregulation of genes associated with adhesion, tissue organization and chemokine secretion including the B-cell chemokine CXCL13. Notably, reducing retinoic acid precursors from the diet or inhibiting RA-signaling through retinoid-antagonist therapy prolong survival by preventing dissemination of leukemia cells into lymphoid tissues. Furthermore, mouse and human leukemia cells could be distinguished from normal B-cells by their increased expression of Rarγ2 and RXRα, respectively. These findings establish a role for retinoids in murine CLL pathogenesis, and provide new therapeutic strategies to target the microenvironment and to control disease progression.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/patología , Células del Estroma/patología , Tretinoina/fisiología , Animales , Línea Celular , Quimiocina CXCL13/metabolismo , Técnicas de Cocultivo , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/metabolismo , Masculino , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de Supervivencia , Tretinoina/metabolismo , Microambiente Tumoral
16.
FASEB J ; 32(10): 5685-5702, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29746165

RESUMEN

Lysosomal accumulation of undegraded materials is a common feature of lysosomal storage diseases, neurodegenerative disorders, and the aging process. To better understand the role of lysosomal storage in the onset of cell damage, we used human fibroblasts loaded with sucrose as a model of lysosomal accumulation. Sucrose-loaded fibroblasts displayed increased lysosomal biogenesis followed by arrested cell proliferation. Notably, we found that reduced lysosomal catabolism and autophagy impairment led to an increase in sphingolipids ( i.e., sphingomyelin, glucosylceramide, ceramide, and the gangliosides GM3 and GD3), at both intracellular and plasma membrane (PM) levels. In addition, we observed an increase in the lysosomal membrane protein Lamp-1 on the PM of sucrose-loaded fibroblasts and a greater release of the soluble lysosomal protein cathepsin D in their extracellular medium compared with controls. These results indicate increased fusion between lysosomes and the PM, as also suggested by the increased activity of lysosomal glycosphingolipid hydrolases on the PM of sucrose-loaded fibroblasts. The inhibition of ß-glucocerebrosidase and nonlysosomal glucosylceramidase, both involved in ceramide production resulting from glycosphingolipid catabolism on the PM, partially restored cell proliferation. Our findings indicate the existence of a new molecular mechanism underlying cell damage triggered by lysosomal impairment.-Samarani, M., Loberto, N., Soldà, G., Straniero, L., Asselta, R., Duga, S., Lunghi, G., Zucca, F. A., Mauri, L., Ciampa, M. G., Schiumarini, D., Bassi, R., Giussani, P., Chiricozzi, E., Prinetti, A., Aureli, M., Sonnino, S. A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest.


Asunto(s)
Puntos de Control del Ciclo Celular , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Lisosomas/metabolismo , Esfingolípidos/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Línea Celular , Membrana Celular/genética , Fibroblastos/citología , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/genética , Esfingolípidos/genética
18.
J Biol Chem ; 292(17): 7040-7051, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28275055

RESUMEN

Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. Here we describe striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells and key roles played by distinct GM3 molecular species at each step of the process.


Asunto(s)
Diferenciación Celular , Gangliósido G(M3)/química , Mioblastos/citología , Animales , Proliferación Celular , Ceramidas/química , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Glicoesfingolípidos/química , Lípidos/química , Espectrometría de Masas , Ratones , Mioblastos/metabolismo , Ácido N-Acetilneuramínico/química , Transducción de Señal
19.
Mol Neurobiol ; 54(2): 1564-1567, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26867654

RESUMEN

In peripheral neuropathies, such as sensorimotor neuropathies, motor neuron diseases, or the Guillain-Barré syndrome, serum antibodies recognizing saccharide units, portion of oligosaccharides, or oligosaccharide chains, have been found. These antibodies are called anti-glycosphingolipid (GSL) or anti-ganglioside antibodies. However, the information on the aglycone carrying the hydrophilic oligosaccharide remains elusive. The absolute and unique association of GSL to the onset, development and symptomatology of the peripheral neuropathies could be misleading. Here, we report some thoughts on the matter.


Asunto(s)
Autoanticuerpos/sangre , Glicoesfingolípidos/sangre , Enfermedades del Sistema Nervioso Periférico/sangre , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Polisacáridos/sangre , Animales , Gangliósidos/sangre , Síndrome de Guillain-Barré/sangre , Síndrome de Guillain-Barré/diagnóstico , Humanos
20.
Mol Neurobiol ; 53(3): 1824-1842, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25762012

RESUMEN

Gangliosides (sialic acid-containing glycosphingolipids) are abundant in neurons of all animal species and play important roles in many cell physiological processes, including differentiation, memory control, cell signaling, neuronal protection, neuronal recovery, and apoptosis. Gangliosides also function as anchors or entry points for various toxins, bacteria, viruses, and autoantibodies. GM1, a ganglioside component of mammalian brains, is present mainly in neurons. GM1 is one of the best studied gangliosides, and our understanding of its properties is extensive. Simple and rapid procedures are available for preparation of GM1 as a natural compound on a large scale, or as a derivative containing an isotopic radionuclide or a specific probe. Great research interest in the properties of GM1 arose from the discovery in the early 1970s of its role as receptor for the bacterial toxin responsible for cholera pathogenesis.


Asunto(s)
Gangliósido G(M1)/metabolismo , Animales , Toxina del Cólera/metabolismo , Gangliósido G(M1)/química , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA