RESUMEN
Background: Transcatheter edge-to-edge valve repair (TEER) is a complex procedure requiring delivery and alignment of the device to the target valve, which can be challenging in atypical or surgically palliated anatomy. We demonstrate application of virtual and physical simulation to plan optimal TEER access and catheter path in normal and congenitally abnormal cardiac anatomy. Methods: Three heart models were created from three-dimensional (3D) images and 3D printed, including two with congenital heart disease. TEER catheter course was simulated both virtually and physically using a commercial TEER system. Results: We demonstrate application of modeling in three patients, including two with congenital heart disease and a Fontan circulation. Access site and pathway to device delivery was simulated by members of a multidisciplinary valve team. Virtual and physical simulation were compared. Conclusions: Virtual and physical simulation of TEER using 3D printed heart models is feasible and may be beneficial for planning and simulation, particularly in patients with complex anatomy. Future work is required to demonstrate application in the clinical setting.