Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775782

RESUMEN

A hybrid cellulose-based programmable nanoplatform for applications in precision radiation oncology is described. Here, sugar heads work as tumor targeting moieties and steer the precise delivery of radiosensitizers, i.e. gold nanoparticles (AuNPs) into triple negative breast cancer (TNBC) cells. This "Trojan horse" approach promotes a specific and massive accumulation of radiosensitizers in TNBC cells, thus avoiding the fast turnover of small-sized AuNPs and the need for high doses of AuNPs for treatment. Application of X-rays resulted in a significant increase of the therapeutic effect while delivering the same dose, showing the possibility to use roughly half dose of X-rays to obtain the same radiotoxicity effect. These data suggest that this hybrid nanoplatform acts as a promising tool for applications in enhancing cancer radiotherapy effects with lower doses of X-rays.

2.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37242002

RESUMEN

The increasing resistance of bacteria to conventional antibiotics represents a severe global emergency for human health. The broad-spectrum antibacterial activity of silver has been known for a long time, and silver at the nanoscale shows enhanced antibacterial activity. This has prompted research into the development of silver-based nanomaterials for applications in clinical settings. In this work, the synthesis of three different silver nanoparticles (AgNPs) hybrids using both organic and inorganic supports with intrinsic antibacterial properties is described. The tuning of the AgNPs' shape and size according to the type of bioactive support was also investigated. Specifically, the commercially available sulfated cellulose nanocrystal (CNC), the salicylic acid functionalized reduced graphene oxide (rGO-SA), and the commercially available titanium dioxide (TiO2) were chosen as organic (CNC, rGO-SA) and inorganic (TiO2) supports. Then, the antimicrobial activity of the AgNP composites was assessed on clinically relevant multi-drug-resistant bacteria and the fungus Candida albicans. The results show how the formation of Ag nanoparticles on the selected supports provides the resulting composite materials with an effective antibacterial activity.

3.
Nanoscale Horiz ; 8(6): 776-782, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-36951189

RESUMEN

Cellulose nanocrystal and gold nanoparticles are assembled, in a unique way, to yield a novel modular glyconanomaterial whose surface is then easily engineered with one or two different headgroups, by exploiting a robust click chemistry route. We demonstrate the potential of this approach by conjugating monosaccharide headgroups to the glyconanomaterial and show that the sugars retain their binding capability to C-type lectin receptors, as also directly visualized by cryo-TEM.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Celulosa/química , Química Clic , Lectinas Tipo C
4.
Nanoscale ; 14(28): 10190-10199, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35796327

RESUMEN

The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.


Asunto(s)
Grafito , Pseudomonas aeruginosa , Biopelículas , Grafito/química , Grafito/farmacología , Monosacáridos
5.
ACS Appl Nano Mater ; 4(12): 14153-14160, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34970641

RESUMEN

The bioimaging of cancer cells by the specific targeting of overexpressed biomarkers is an approach that holds great promise in the identification of selective diagnostic tools. Tumor-associated human carbonic anhydrase (hCA) isoforms IX and XII have been considered so far as well-defined biomarkers, with their expression correlating with cancer progression and aggressiveness. Therefore, the availability of highly performant fluorescent tools tailored for their targeting and able to efficiently visualize such key targets is in high demand. We report here on the design and synthesis of a kind of quantum dot (QD)-based fluorescent glyconanoprobe coated with a binary mixture of ligands, which, according to the structure of the terminal domains, impart specific property sets to the fluorescent probe. Specifically, monosaccharide residues ensured the dispersibility in the biological medium, CA inhibitor residues provided specific targeting of membrane-anchored hCA IX overexpressed on bladder cancer cells, and the quantum dots imparted the optical/fluorescence properties.

6.
Molecules ; 26(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34684887

RESUMEN

The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.

7.
ACS Appl Mater Interfaces ; 13(22): 26288-26298, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038082

RESUMEN

The custom functionalization of a graphene surface allows access to engineered nanomaterials with improved colloidal stability and tailored specific properties, which are available to be employed in a wide range of applications ranging from materials to life science. The high surface area and their intrinsic physical and biological properties make reduced graphene oxide and graphene oxide unique materials for the custom functionalization with bioactive molecules by exploiting different surface chemistries. In this work, preparation (on the gram scale) of reduced graphene oxide and graphene oxide derivatives functionalized with the well-known antibacterial agent salicylic acid is reported. The salicylic acid functionalities offered a stable colloidal dispersion and, in addition, homogeneous absorption on a sample of textile manufacture (i.e., cotton fabrics), as shown by a Raman spectroscopy study, thus providing nanoengineered materials with significant antibacterial activity toward different strains of microorganisms. Surprisingly, graphene surface functionalization also ensured resistance to detergent washing treatments as verified on a model system using the quartz crystal microbalance technique. Therefore, our findings paved the way for the development of antibacterial additives for cotton fabrics in the absence of metal components, thus limiting undesirable side effects.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Grafito/química , Nanoestructuras/administración & dosificación , Ácido Salicílico/química , Textiles/microbiología , Antibacterianos/química , Nanoestructuras/química , Textiles/análisis
8.
Bioorg Chem ; 109: 104730, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33621778

RESUMEN

Lectins are involved in a wide range of carbohydrate mediated recognition processes. Therefore, the availability of highly performant fluorescent tools tailored for lectin targeting and able to efficiently track events related to such key targets is in high demand. We report here on the synthesis of the glyco-BODIPYs 1 and 2, based on the efficient combination of a Heck-like cross coupling and a Knoevenagel condensation, which revealed efficient in addressing lectins. In particular, glyco-BODIPY 1 has two glycosidase stable C-mannose residues, which act as DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) targeting modules. By using live-cell fluorescence microscopy, we proved that BODIPY-mannose 1 was efficiently taken up by immune cells expressing DC-SIGN receptors. Super-resolution stimulated emission depletion (STED) microscopy further revealed that the internalized 1 localized in membranes of endosomes, proving that 1 is a reliable tool also in STED applications. Of note, glyco-BODIPY 1 contains an aryl-azido group, which allows further functionalization of the glycoprobe with bioactive molecules, thus paving the way for the use of 1 for tracking lectin-mediated cell internalization in diverse biological settings.


Asunto(s)
Compuestos de Boro/química , Moléculas de Adhesión Celular/análisis , Lectinas Tipo C/análisis , Receptores de Superficie Celular/análisis , Compuestos de Boro/síntesis química , Línea Celular , Relación Dosis-Respuesta a Droga , Glucosa/química , Voluntarios Sanos , Humanos , Manosa/química , Estructura Molecular , Relación Estructura-Actividad
9.
Beilstein J Org Chem ; 16: 2272-2281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983271

RESUMEN

Mechanochemistry is an emerging and reliable alternative to conventional solution (batch) synthesis of complex molecules under green and solvent-free conditions. In this regard, we report here on the conjugation of a dextran polysaccharide with a fluorescent probe, a phenylboronic acid (PBA)-functionalized boron dipyrromethene (BODIPY) applying the ball milling approach. The ball milling formation of boron esters between PBA BODIPY and dextran proved to be more efficient in terms of reaction time, amount of reactants, and labelling degree compared to the corresponding solution-based synthetic route. PBA-BODIPY dextran assembles into nanoparticles of around 200 nm by hydrophobic interactions. The resulting PBA-BODIPY dextran nanoparticles retain an apolar interior as proved by pyrene fluorescence, suitable for the encapsulation of hydrophobic drugs with high biocompatibility while remaining fluorescent.

10.
J Mater Chem B ; 7(16): 2678-2687, 2019 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-31073405

RESUMEN

A drug delivery system (DDS) for combined therapy, based on a short oxidized multiwalled carbon nanotube, is reported. It was prepared exploiting a synthetic approach which allowed loading of two drugs, doxorubicin and metformin, the targeting agent biotin and a radiolabeling tag, to enable labeling with Ga-68 or Cu-64 in order to perform an extensive biodistribution study by PET/CT. The DDS biodistribution profile changes with different administration methods. Once administered at therapeutic doses, the DDS showed a marginal beneficial effect on 4T1 tumor bearing mice, a syngeneic and orthotopic model of triple negative breast cancer, with survival extended by 1 week and 2 days in 20% of the mice. This is encouraging given the aggressiveness of the 4T1 tumor. Furthermore our DDS was well tolerated, ruling out concerns regarding the toxicity of carbon nanotubes.


Asunto(s)
Doxorrubicina/química , Portadores de Fármacos/química , Metformina/química , Nanotubos de Carbono/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Radioisótopos de Cobre/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Portadores de Fármacos/síntesis química , Radioisótopos de Galio/química , Marcaje Isotópico , Metformina/farmacocinética , Metformina/farmacología , Ratones , Proyectos Piloto , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular
11.
J Mater Chem B ; 6(14): 2022-2035, 2018 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254426

RESUMEN

The progress of the chemistry of carbon nanotubes (CNT) and graphene derivatives [mainly graphene oxide (GO)] has produced a number of technologically advanced drug delivery systems (DDS) that have been used in the field of nanomedicine, mostly in studies related to oncology. However, such a demanding field of research requires continuous improvements in terms of efficiency, selectivity and versatility. The loading of two, or more, bioactive components on the same nanoparticle offers new possibilities for treating cancer, efficiently addressing issues related both to biodistribution and pharmacokinetics. Nanostructured carbon materials (NCM), with their high surface area, their efficient cellular membrane crossing and their chemical versatility are ideal candidates for easy hetero-decoration and exploitation as advanced DDS. This review describes the achievements obtained in this area focusing on those studies in which two or more active components were loaded onto the DDS.

12.
Beilstein J Nanotechnol ; 8: 485-493, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28326239

RESUMEN

A new synthetic approach for the production of carbon nanomaterials (CNM) decorated with organophosphorus moieties is presented. Three different triphenylphosphine oxide (TPPO) derivatives were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs) and graphene platelets (GPs). The TPPOs chosen bear functional groups able to react with the CNMs by Tour reaction (an amino group), nitrene cycloaddition (an azido group) or CuAAC reaction (one terminal C-C triple bond). All the adducts were characterized by FTIR, Raman spectroscopy, TEM, XPS, elemental analysis and ICP-AES. The cycloaddition of nitrene provided the higher loading on ox-MWCNTs and GPs as well, while the Tour approach gave best results with nanotubes (CNTs). Finally, we investigated the possibility to reduce the TPPO functionalized CNMs to the corresponding phosphine derivatives and applied one of the materials produced as heterogeneous organocatalyst in a Staudinger ligation reaction.

13.
Int J Pharm ; 521(1-2): 69-72, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28229946

RESUMEN

Batches of oxidized multiwalled carbon nanotubes differing in length were adopted to prepare two drug delivery systems (DDS) loaded with doxorubicin. The different internalization of the two batches, verified by atomic emission spectroscopy onto cell lysates, was also confirmed by the different toxicity of the same DDS loaded with doxorubicin. In vitro experiments evidenced, after 48h of incubation, the superior efficacy of the shortest nanotubes. However, upon prolonging the incubation time up to 72h the difference in efficiency was minimized due to the spontaneous release of doxorubicin by the non-internalized long nanotubes.


Asunto(s)
Doxorrubicina/administración & dosificación , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Nanotubos de Carbono/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Células MCF-7 , Factores de Tiempo
14.
J Mater Chem B ; 4(21): 3823-3831, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32263320

RESUMEN

To demonstrate the potential of azido-substituted carbon nanotubes for application in nanomedicine, multiple-decorated oxidized multi-walled carbon nanotubes as drug delivery systems have been synthesized. These DDSs were able to carry doxorubicin inside breast MCF-7 cancer cell lines resulting in an enhanced cytotoxic effect with respect to the free drug. Decoration of the carbon nanotubes was accomplished through both covalent and non-covalent approaches: versatile click reactions and π-π interactions were exploited. To assess the internalization of the carbon nanotubes inside cells, decoration with a BODIPY fluorescent molecule was performed. Furthermore, the nanotubes were decorated with a biotin selector molecule to increase the uptake of the system by cancer cells. Comparative studies were performed on the complete drug delivery system to highlight its effect with respect to the free drug and the contribution of the selector in the internalization efficiency. Finally, preliminary in vivo tests were performed on MCF-7 inoculated mice. A net improvement in efficiency, concerning the minor growth of the tumors, has been found when using doxorubicin loaded on our drug delivery system with respect to free doxorubicin.

15.
Soft Matter ; 11(42): 8333-41, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26350644

RESUMEN

The effect of the replacement of molecular moieties (carbamates vs. urea) that drive self-assembly for two organogelators with an identical C(2) symmetric molecular structure is described. The main properties of the gels obtained from the urea-based organogelators are also discussed. The proposed organogelators are chiral molecules and are able to express chirality also at the supramolecular level, thus allowing the employment of electronic circular dichroism to gain insight into the molecular-scale structure of fibrillar aggregates. With the same technique, the behavior of enantiomeric mixtures of the urea-based organogelators was investigated, revealing the occurrence of different self-sorting phenomena at the molecular and supramolecular scale. The urea-based organogelators demonstrated to be more efficient gelators with respect to the carbamate-based analogues, showing a high gel-to-sol transition temperature (up to 66 °C) and a very low minimum gelling concentration (0.85 mg mL(-1)). This study is a starting point for a deeper investigation of structure/property relationships and, taking into account the peculiar behavior detected for the enantiomeric mixtures, also of self-sorting and molecular recognition phenomena.

16.
Chirality ; 27(11): 784-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26365990

RESUMEN

Chiral discrimination in a racemic mixture of dipalmitoylphosphatidylcholine (DPPC) is induced by a new selector at the water-air interface: L-DPPC is segregated in the condensed phase of a Langmuir monolayer upon interactions with an enantiopure amphiphilic compound.


Asunto(s)
Fosfolípidos/química , Estereoisomerismo , Propiedades de Superficie
17.
Chemistry ; 21(43): 15349-53, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26332894

RESUMEN

A series of azido-dyes were synthesized through Knoevenagel reactions of an azido-BODIPY with aromatic aldehydes. The nature of the substituents allowed the fine tuning of their spectroscopic properties. The dyes were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs), bearing terminal triple bond groups, by CuAAC reactions, affording fluorescent materials. This decoration allowed the efficient determination of the internalization of the ox-MWCNT derivatives by different model cancer cells, such as MCF7.

18.
Chempluschem ; 80(4): 704-714, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31973422

RESUMEN

Efforts have been made in recent years to develop novel functionalisation protocols aimed at imparting multimodality and improved properties to complex carbon-based nanostructures. The incorporation of cleavable bonds to the nanomaterial surface for the controlled release (or exchange) of specific molecules under appropriate chemical and biological settings is relatively unexplored. The design and synthesis of a hetero-bifunctional linker joining a "cleavable" disulfide moiety for the covalent anchoring of a wide range of thiol end-capped (bio)molecules and a "clickable" terminal acetylene group is described. The strategy is based on the well-established copper-mediated acetylene-azide coupling reaction between the acetylene linker and single-walled carbon nanotubes decorated with phenylazido pendant arms. As a result, easily "post-derivatisable" and traceable nanostructured platforms containing a linking group potentially available for a wide range of biological probes are prepared and completely characterised.

19.
Chempluschem ; 80(4): 636, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31973433

RESUMEN

Invited for this month's cover are collaborators from four different Italian research groups, three at the National Research Council (ICCOM, IFAC, and ISOF) and one at the University of Florence. The cover picture shows a representative cartoon of engineered 1D carbon nanomaterials and their effective surface decoration with (bio)molecules and fluorescent markers. Read the full text of the article at 10.1002/cplu.201402391.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...