Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Catal ; 13(9): 6375-6381, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37180967

RESUMEN

Ni-catalyzed C-H functionalization reactions are becoming efficient routes to access a variety of functionalized arenes, yet the mechanisms of these catalytic C-C coupling reactions are not well understood. Here, we report the catalytic and stoichiometric arylation reactions of a nickel(II) metallacycle. Treatment of this species with silver(I)-aryl complexes results in facile arylation, consistent with a redox transmetalation step. Additionally, treatment with electrophilic coupling partners generates C-C and C-S bonds. We anticipate that this redox transmetalation step may be relevant to other coupling reactions that employ silver salts as additives.

2.
Chem Commun (Camb) ; 58(7): 997-1000, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34937074

RESUMEN

New coordination environments are reported for Np(III) and Pu(III) based on pilot studies of U(III) in 2.2.2-cryptand (crypt). The U(III)-in-crypt complex, [U(crypt)I2][I], obtained from the reaction between UI3 and crypt, is treated with Me3SiOTf (OTf = O3SCF3) in benzene to form the [U(crypt)(OTf)2][OTf] complex. Similarly, the isomorphous Np(III) and Pu(III) complexes were obtained similarly starting from [AnI3(THF)4]. All three complexes (1-An; An = U, Np, Pu) contain an encapsulated actinide in a THF-soluble complex. Absorption spectroscopy and DFT calculations are consistent with 5f3 U(III), 5f4 Np(III), and 5f5 Pu(III) electron configurations.

3.
J Am Chem Soc ; 143(40): 16610-16620, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34586787

RESUMEN

The capacity of X-ray photoelectron spectroscopy (XPS) to provide information on the electronic structure of molecular organometallic complexes of Ln(II) ions (Ln = lanthanide) has been examined for the first time. XPS spectra were obtained on the air-sensitive molecular trivalent 4fn Cp'3LnIII complexes (Ln = Sm, Eu, Gd, Tb; Cp' = C5H4SiMe3) and compared to those of the highly reactive divalent complexes, [K(crypt)][Cp'3LnII] (crypt = 2.2.2-cryptand), which have either 4fn+1 (Sm, Eu) or 4fn5d1 electron configurations (Gd, Tb). The Ln 4d, Si 2p, and C 1s regions of the Ln(III) and Ln(II) complexes were identified and compared. The metal 4d peaks of these molecular lanthanide complexes were used diagnostically to compare oxidation states. The valence region of the Gd(III) and Gd(II) complexes was also examined with XPS and density function theory/random phase approximation (DFT/RPA) calculations, and this led to the tentative assignment of a signal from the 5d1 electron consistent with a 4f75d1 electron configuration for Gd(II).

4.
Inorg Chem ; 59(23): 17077-17083, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33226794

RESUMEN

The electrochemical properties of U(III)-in-crypt (crypt = 2.2.2-cryptand) were examined in dimethylformamide (DMF) and acetonitrile (MeCN) to determine the oxidative stability offered by crypt as a ligand. Cyclic voltammetry revealed a U(III)/U(IV) irreversible oxidation at EPA= -0.49 V (vs Fe(C5H5)2+/0) in DMF and at EPA= -0.31 V (vs Fe(C5H5)2+/0) in MeCN. The electrochemistry of U(III)-in-crypt complexes in the presence of water was also examined. These studies are supported by crystallographically characterized examples of U(III)-in-crypt complexes as DMF, MeCN, and water adducts.

5.
Angew Chem Int Ed Engl ; 59(37): 16141-16146, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32441487

RESUMEN

Lanthanide triflates have been used to incorporate NdIII and SmIII ions into the 2.2.2-cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3 complexes (Ln=Nd, Sm; OTf=SO3 CF3 ) react with crypt in THF to form the THF-soluble complexes [LnIII (crypt)(OTf)2 ][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII -in-crypt complexes using KC8 in THF forms the neutral LnII -in-crypt triflate complexes [LnII (crypt)(OTf)2 ]. DFT calculations on [NdII (crypt)]2+ ], the first NdII cryptand complex, assign a 4f4 electron configuration to this ion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...