Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2037, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499536

RESUMEN

Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.


Asunto(s)
Antibacterianos , Cefalosporinas , Humanos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Bacterias , Aprendizaje Automático , Tecnología
2.
Microbes Infect ; 25(7): 105151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207717

RESUMEN

Nanomotion technology is a growth-independent approach that can be used to detect and record the vibrations of bacteria attached to cantilevers. We have developed a nanomotion-based antibiotic susceptibility test (AST) protocol for Mycobacterium tuberculosis (MTB). The protocol was used to predict strain phenotype towards isoniazid (INH) and rifampicin (RIF) using a leave-one-out cross-validation (LOOCV) and machine learning techniques. This MTB-nanomotion protocol takes 21 h, including cell suspension preparation, optimized bacterial attachment to functionalized cantilever, and nanomotion recording before and after antibiotic exposure. We applied this protocol to MTB isolates (n = 40) and were able to discriminate between susceptible and resistant strains for INH and RIF with a maximum sensitivity of 97.4% and 100%, respectively, and a maximum specificity of 100% for both antibiotics when considering each nanomotion recording to be a distinct experiment. Grouping recordings as triplicates based on source isolate improved sensitivity and specificity to 100% for both antibiotics. Nanomotion technology can potentially reduce time-to-result significantly compared to the days and weeks currently needed for current phenotypic ASTs for MTB. It can further be extended to other anti-TB drugs to help guide more effective TB treatment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Rifampin/farmacología
3.
BMJ Open ; 12(11): e064016, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36410804

RESUMEN

INTRODUCTION: Effective treatment of bloodstream infections (BSIs) is relying on rapid identification of the causing pathogen and its antibiotic susceptibility. Still, most commercially available antibiotic susceptibility testing (AST) methods are based on monitoring bacterial growth, thus impacting the time to results. The Resistell AST is based on a new technology measuring the nanomotion caused by physiologically active bacterial cells and detecting the changes in nanomotion caused by the exposure to a drug. METHODS AND ANALYSIS: This is a single-centre, prospective, cross-sectional, single-arm diagnostic accuracy study to determine the agreement of the Resistell AST on Gram-negative bacteria isolated from blood cultures among patients admitted to a tertiary-care hospital with the reference method. Up to 300 patients will be recruited. Starting with a pilot phase, enrolling 10%-20% of the subjects and limited to Escherichia coli BSI tested for ceftriaxone susceptibility, the main phase will follow, extending the study to Klebsiella pneumoniae and ciprofloxacin. ETHICS AND DISSEMINATION: This study has received ethical approval from the Swiss Ethics Committees (swissethics, project 2020-01622). All the case report forms and clinical samples will be assigned a study code by the local investigators and stored anonymously at the reference centre (Lausanne University Hospital). The results will be broadly distributed through conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT05002413).


Asunto(s)
Bacteriemia , Adulto , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Estudios Transversales , Escherichia coli , Pruebas de Sensibilidad Microbiana , Estudios Observacionales como Asunto , Estudios Prospectivos , Tecnología , Centros de Atención Terciaria
4.
J Appl Genet ; 59(1): 119-121, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29372514

RESUMEN

The wide application of sulfonamide (SA) antibiotics in human and veterinary medicine contributes to the accumulation of these antibiotics in the environment and the corresponding onset of antibiotic resistance among bacteria. Microbacterium sp. BR1 is capable of mineralizing sulfamethoxazole and other SAs via a novel mechanism. The genetic basis of SA elimination by BR1 remains unknown. Development of an efficient plasmid transfer protocol for Microbacterium sp. BR1 is highly desirable, as it would open the door to genetic analysis and manipulation of its genome. Here we report that intergeneric Escherichia coli-Microbacterium spp. BR1 conjugation is an efficient way to introduce various plasmids into BR1. The generated transconjugants were stable in the presence of antibiotics and the plasmids showed no signs of rearrangements. Nevertheless, the plasmids were rapidly lost in the absence of selection. We also show that the cumate-inducible beta-glucuronidase reporter gene functions in BR1 and is strictly regulated. Our results set the working ground for further genetic manipulations of BR1, such as the overexpression of sulfonamide degradation genes or the selection of strong microbacterial promoters.


Asunto(s)
Actinomycetales/genética , Clonación Molecular , Conjugación Genética , Sulfonamidas/metabolismo , Escherichia coli/genética , Vectores Genéticos , Plásmidos/genética
5.
N Biotechnol ; 43: 37-43, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28720419

RESUMEN

Piracetam (2-oxo-1-pyrrolidine acetamide) is a popular cognitive enhancer, which has recently been detected in waste and drinking water. Nootropic drugs are designed to affect human metabolism and act on the nervous system, but their environmental effects have yet to be the subject of detailed studies. In this report, we present the efficient biodegradation of the cognitive enhancer, piracetam. Two bacterial strains capable of using this compound as the sole carbon source were isolated and later identified as Ochrobactrum anthropi strain MW6 and Ochrobactrum intermedium strain MW7. The compound's mineralization and the cleavage of the heterocyclic ring were shown in the experiments with 14C-labeled piracetam. This is also the first report of a pharmaceutical's degradation by the Ochrobactrum genus. This study presents model microorganisms that can be used in further investigation of piracetam's degradation pathways as well as enzymes and genes involved in the process.


Asunto(s)
Nootrópicos/metabolismo , Ochrobactrum/metabolismo , Piracetam/metabolismo , Cromatografía Líquida de Alta Presión , Ochrobactrum/crecimiento & desarrollo , Ochrobactrum/aislamiento & purificación , Piracetam/análisis
6.
N Biotechnol ; 43: 30-36, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28855122

RESUMEN

The consumption of nootropic drugs has increased tremendously in the last decade, though the studies on their environmental fate are still scarce. Nootropics are bioactive compounds designed to alter human's physiology therefore the adverse effects towards wildlife can be expected. In order to understand their environmental impact, the knowledge on their transformation pathways is necessary. Methylphenidate belongs to the most prescribed neuro-enhancers and is among the most favored smart drugs used in non-medical situations. It is metabolized in human liver and excreted as ritalinic acid. Here, we showed for the first time that ritalinic acid can be biodegraded and used as a sole carbon and nitrogen source by various microbial strains originating from different environmental samples. Five axenic strains were isolated and identified as: Arthrobacter sp. strain MW1, MW2 and MW3, Phycicoccus sp. strain MW4 and Nocardioides sp. strain MW5. Our research provides the first insight into the metabolism of ritalinic acid and suggests that it may differ depending on the strain and growth conditions, especially on availability of nitrogen. The isolates obtained in this study can serve as model organisms in further studies on the catabolism of ritalinic acid and methylphenidate but potentially also other compounds with similar structures. Our findings have important implication for the sewage epidemiology. We demonstrated that ritalinic acid is subject to quick and efficient biodegradation thus its use as a stable biomarker should be reconsidered.


Asunto(s)
Actinomycetales/aislamiento & purificación , Arthrobacter/aislamiento & purificación , Metilfenidato/análogos & derivados , Metilfenidato/metabolismo , Actinomycetales/crecimiento & desarrollo , Arthrobacter/crecimiento & desarrollo , Biodegradación Ambiental , Cromatografía Líquida de Alta Presión , Humanos , Metilfenidato/análisis , Estructura Molecular
7.
Appl Microbiol Biotechnol ; 101(6): 2589-2601, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27909745

RESUMEN

Dechlorination patterns of three tetrachlorobenzene isomers, 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-TeCB, were studied in anoxic microcosms derived from contaminated harbor sludge. The removal of doubly, singly, and un-flanked chlorine atoms was noted in 1,2,3,4- and 1,2,3,5-TeCB fed microcosms, whereas only singly flanked chlorine was removed in 1,2,4,5-TeCB microcosms. The thermodynamically more favorable reactions were selectively followed by the enriched cultures with di- and/or mono-chlorobenzene as the main end products of the reductive dechlorination of all three isomers. Based on quantitative PCR analysis targeting 16S rRNA genes of known organohalide-respiring bacteria, the growth of Dehalococcoides was found to be associated with the reductive dechlorination of all three isomers, while growth of Dehalobacter, another known TeCB dechlorinator, was only observed in one 1,2,3,5-TeCB enriched microcosm among biological triplicates. Numbers of Desulfitobacterium and Geobacter as facultative dechlorinators were rather stable suggesting that they were not (directly) involved in the observed TeCB dechlorination. Bacterial community profiling suggested bacteria belonging to the phylum Bacteroidetes and the order Clostridiales as well as sulfate-reducing members of the class Deltaproteobacteria as putative stimulating guilds that provide electron donor and/or organic cofactors to fastidious dechlorinators. Our results provide a better understanding of thermodynamically preferred TeCB dechlorinating pathways in harbor environments and microbial guilds enriched and active in anoxic TeCB dechlorinating microcosms.


Asunto(s)
Cloro/metabolismo , Clorobencenos/metabolismo , ADN Bacteriano/genética , Consorcios Microbianos/genética , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Cloro/aislamiento & purificación , Clorobencenos/aislamiento & purificación , Chloroflexi/genética , Chloroflexi/metabolismo , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Geobacter/genética , Geobacter/metabolismo , Humanos , Peptococcaceae/genética , Peptococcaceae/metabolismo , Aguas del Alcantarillado/química , Estereoisomerismo , Termodinámica , Contaminantes Químicos del Agua/aislamiento & purificación
8.
Environ Sci Technol ; 49(10): 6029-36, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25906077

RESUMEN

Carbon isotope fractionation of sulfamethoxazole (SMX) during biodegradation by Microbacterium sp. strain BR1 (ipso-hydroxylation) and upon direct photolysis was investigated. Carbon isotope signatures (δ(13)C) of SMX were measured by LC-IRMS (liquid chromatography coupled to isotope ratio mass spectrometry). A new LC-IRMS method for the SMX metabolite, 3-amino-5-methylisoxazole (3A5MI), was established. Carbon isotope enrichment factors for SMX (ε(C)) were -0.6 ± 0.1‰ for biodegradation and -2.0 ± 0.1‰ and -3.0 ± 0.2‰ for direct photolysis, at pH 7.4 and pH 5, respectively. The corresponding apparent kinetic isotope effects (AKIE) for ipso-hydroxylation were 1.006 ± 0.001; these fall in the same range as AKIE in previously studied hydroxylation reactions. The differences in SMX and 3A5MI fractionation upon biotic and abiotic degradation suggest that compound specific stable isotope analysis (CSIA) is a suitable method to distinguish SMX reaction pathways. In addition, the study revealed that the extent of isotope fractionation during SMX photolytic cleavage is pH-dependent.


Asunto(s)
Actinomycetales/metabolismo , Biodegradación Ambiental , Isótopos de Carbono/metabolismo , Sulfametoxazol/metabolismo , Fotólisis , Sulfametoxazol/análisis
9.
Biodegradation ; 25(5): 757-76, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25037978

RESUMEN

Anaerobic reductive dechlorination of hexachlorobenzene (HCB) and three isomers of tetrachlorobenzene (TeCB) (1,2,3,4-, 1,2,3,5- and 1,2,4,5-TeCB) was investigated in microcosms containing chloroaromatic contaminated river sediment. All chlorobenzenes were dechlorinated to dichlorobenzene (DCB) or monochlorobenzene. From the sediment, a methanogenic sediment-free culture was obtained which dechlorinated HCB, pentachlorobenzene, three TeCB isomers, three trichlorobenzene (TCB) isomers (1,2,3-, 1,2,4- and 1,3,5-TCB) and 1,2-DCB. Dechlorination involved multiple pathways including the removal of doubly flanked, singly flanked and isolated chlorine substituents. 454-pyrosequencing of partial bacterial 16S rRNA genes amplified from selected chlorobenzene dechlorinating sediment-free enrichment cultures revealed the presence of a variety of bacterial species, including Dehalobacter and Dehalococcoides mccartyi, that were previously documented as organohalide respiring bacteria. A genus with apparent close relationship to Desulfitobacterium that also has been associated with organohalide respiration, composed the major fraction of the operational taxonomic units (OTUs). Another major OTU was linked with Sedimentibacter sp., a genus that was previously identified in strict co-cultures of consortia reductively dehalogenating chlorinated compounds. Our data point towards the existence of multiple interactions within highly chlorinated benzene dechlorinating communities.


Asunto(s)
Clorobencenos/metabolismo , Chloroflexi/metabolismo , Aguas del Alcantarillado/microbiología , Biodegradación Ambiental , Chloroflexi/genética , ARN Ribosómico 16S , Ríos/microbiología
10.
Appl Environ Microbiol ; 79(18): 5550-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23835177

RESUMEN

Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us.


Asunto(s)
Actinomycetales/metabolismo , Antibacterianos/metabolismo , Sulfonamidas/metabolismo , Biotransformación , Contaminantes Ambientales/metabolismo , Hidroxilación , Redes y Vías Metabólicas , NAD/metabolismo
11.
FEMS Microbiol Ecol ; 83(1): 176-88, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22845344

RESUMEN

An enrichment culture dominated by one type of Dehalococcoides sp. (83% of clones) was characterised. This culture, originally derived from contaminated groundwater from the area of Bitterfeld-Wolfen (Saxony-Anhalt, Germany), dehalogenates chlorinated ethenes to ethene. Further, the culture also dehalogenated vinyl bromide (VB) and 1,2-dichloroethane (DCA) to ethene, 1,2,3,4- and 1,2,3,5-tetrachlorobenzene (TeCB), penta- and hexachlorobenzene (PeCB and HCB) to trichlorobenzenes (TCB), lindane to monochlorobenzene (MCB) and pentachlorophenol (PCP) to 2,3,4,6-tetrachlorophenol (TeCP). Growth was proven by quantitative PCR for all active cultures, except for those with TeCB, lindane and PCP. The growth yields obtained ranged from (2.9 ± 0.7) × 10(7) cells µmol(-1) Br(-) released on VB to (34.8 ± 5.4) × 10(7) cells µmol(-1) Cl(-) released on VC. Genes coding for nine putative reductive dehalogenases, the enzymes that mediate the respiratory process of dehalogenation, were identified. Phylogenetic analysis revealed eight reductive dehalogenases with similar sequences in other Dehalococcoides strains and one unique sequence.


Asunto(s)
Clorobencenos/metabolismo , Chloroflexi/metabolismo , Clorofenoles/metabolismo , Halogenación , Contaminantes del Suelo/metabolismo , Biodiversidad , Chloroflexi/genética , Chloroflexi/crecimiento & desarrollo , Genes Bacterianos , Alemania , Hidrolasas/metabolismo , Filogenia
12.
J Biotechnol ; 156(4): 382-91, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21745504

RESUMEN

"Food, Agriculture and Fisheries and Biotechnology" is one of 10 thematic areas in the Cooperation programme of the European Union's 7th Framework Programme for Research, Technological Development and Demonstration Activities (FP7). With a budget of nearly €2 billion for the period 2007-2013, its objective is to foster the development of a European Knowledge-Based Bio-Economy (KBBE) by bringing together science, industry and other stakeholders that produce, manage or otherwise exploit biological resources. Biotechnology plays an important role in addressing social, environmental and economic challenges and it is recognised as a key enabling technology in the transition to a green, low carbon and resource-efficient economy. Biotechnologies for non-health applications have received a considerable attention in FP7 and to date 61 projects on industrial, marine, plant, environmental and emerging biotechnologies have been supported with a contribution of €262.8 million from the European Commission (EC). This article presents an outlook of the research, technological development and demonstration activities in biotechnology currently supported in FP7 within the Cooperation programme, including a brief overview of the policy context.


Asunto(s)
Biotecnología/tendencias , Animales , Ecología , Unión Europea , Industria Procesadora y de Extracción , Tecnología de Alimentos , Tecnología Química Verde , Humanos , Biología Marina
13.
FEMS Microbiol Lett ; 315(1): 6-16, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21133990

RESUMEN

The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate were added to sediment microcosms acquired from two brackish water locations. Hexadecane, ethylbenzene or 1-(13)C-naphthalene were used as model hydrocarbons. Methane was released most rapidly from incubations amended with ferrihydrite and hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogenesis. The rates of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition triggered the growth of Methanosarcina-related methanogens. Additionally, methane was removed concomitantly by anaerobic methanotrophy. ANME-1 and -2 methyl coenzyme M reductase genes were detected, indicating anaerobic methanotrophy as an accompanying process [Correction added 16 December after online publication: 'methyl coenzyme A' changed to 'methyl coenzyme M' in this sentence]. The experiments presented here demonstrate the feasibility of enhancing methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological settings.


Asunto(s)
Geobacter/metabolismo , Hidrocarburos Acíclicos/metabolismo , Hidrocarburos Aromáticos/metabolismo , Metano/metabolismo , Methanosarcina/metabolismo , Anaerobiosis , Bélgica , Biodegradación Ambiental , Dióxido de Carbono/metabolismo , Compuestos Férricos/metabolismo , Geobacter/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Hierro/metabolismo , Compuestos de Manganeso/metabolismo , Methanosarcina/genética , Datos de Secuencia Molecular , Nitratos/metabolismo , Oxidación-Reducción , Óxidos/metabolismo , Sulfatos/metabolismo , Factores de Tiempo
14.
Chemosphere ; 80(10): 1113-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20638100

RESUMEN

Carbon isotope fractionation was observed during dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD) by a mixed culture containing Dehalococcoides ethenogenes strain 195. Fractionation was examined when 1,2,3,4-TeCDD was added as the only chlorinated compound and when 1,2,3,4-TeCDD was added with a known growth substrate, tetrachloroethene (PCE). The 1,2,3,4-TeCDD was dechlorinated to 1,2,4-trichlorodibenzo-p-dioxin (1,2,4-TrCDD) which was enriched in (13)C relative to 1,2,3,4-TeCDD with isotope separation factors, epsilon(C), of 1.3+/-0.2 per thousand and 1.7+/-0.4 per thousand (average+/-95% confidence interval (CI)) in cultures with and without PCE, respectively. The 1,2,4-TrCDD was further dechlorinated to 1,3-dichlorodibenzo-p-dioxin (1,3-DCDD) which was depleted in (13)C relative to 1,2,4-TrCDD with epsilon(C) of -2.4+/-0.4 per thousand and -2.9+/-0.8 per thousand (average+/-95% CI) in cultures with and without PCE, respectively. This demonstrates carbon isotope fractionation during sequential reductive dechlorination of PCDDs, where isotope fractionation during dechlorination of the intermediate was substantial and a (13)C depleted lightly chlorinated PCDD congener was ultimately formed during dechlorination of more highly chlorinated PCDD congeners. Despite reproducible, statistically significant differences between isotope compositions of the parent, 1,2,3,4-TeCDD and daughter, 1,2,4-TrCDD and 1,3-DCDD congeners in triplicate bottles of both treatments, fractionation factors for 1,2,3,4-TeCDD could not be determined for all replicates by regression analysis of the plot of the Rayleigh equation. It is possible that dissolution of 1,2,3,4-TeCDD imposed a kinetic limitation on dechlorination, thus masking isotope fractionation during its dechlorination.


Asunto(s)
Isótopos de Carbono/metabolismo , Chloroflexi/metabolismo , Dibenzodioxinas Policloradas/análogos & derivados , Isótopos de Carbono/análisis , Halogenación , Dibenzodioxinas Policloradas/análisis , Dibenzodioxinas Policloradas/metabolismo
15.
FEMS Microbiol Ecol ; 72(2): 297-310, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20507364

RESUMEN

A Dehalococcoides-dominated culture coupling reductive dechlorination of tetrachloroethene (PCE) to ethene to growth was enriched from a European field site for the first time. Microcosms were set up using groundwater from a chlorinated ethene-contaminated anaerobic aquifer in Bitterfeld (Germany). Active, lactate-amended microcosms capable of PCE dechlorination to ethene without the accumulation of intermediates were used for further enrichment. After three transfers on lactate as an electron donor and PCE as an electron acceptor, the enrichment was transferred to parallel cultures with one of the chlorinated ethenes as an electron acceptor and acetate and hydrogen as the carbon and energy source, respectively. After three more transfers, a highly purified culture was derived that was capable of dechlorinating PCE with hydrogen and acetate as the electron donor and carbon source, respectively. PCR, followed by denaturing gradient gel electrophoresis, cloning and sequencing revealed that this culture was dominated by a Dehalococcoides sp. belonging to the Pinellas group. Investigation of substrate specificity in the parallel cultures suggested the presence of a novel Dehalococcoides that can couple all dechlorination steps, from PCE to ethene, to energy conservation. Quantitative real-time PCR confirmed growth with PCE, cis-dichloroethene, 1,1-dichloroethene or vinyl chloride as electron acceptors. The culture was designated BTF08 due to its origin in Bitterfeld.


Asunto(s)
Chloroflexi/metabolismo , Etilenos/metabolismo , Tetracloroetileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Chloroflexi/genética , Chloroflexi/crecimiento & desarrollo , Medios de Cultivo , ADN Bacteriano/genética , Halogenación , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad por Sustrato
16.
Chemosphere ; 71(4): 639-48, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18155126

RESUMEN

The variability of stable carbon isotope fractionation upon reductive dechlorination of tetra- and trichloroethene by several microbial strains was investigated to examine the uncertainties related to the in situ application of compound specific isotope analysis (CSIA) of chlorinated ethenes. Carbon isotope fractionation was investigated with a set of microorganisms representative for the currently known diversity of dehalorespirers: Dehalococcoides ethenogenes strain 195, Desulfitobacterium sp. strain Viet1, Desulfuromonas michiganensis and Geobacter lovleyi sp. strain SZ and compared to the previous reports using Sulfurospirillum spp. and Desulfitobacterium sp. strain PCE-S. Carbon isotope fractionation of tetrachloroethene (PCE) and trichlorethene (TCE) was highly variable ranging from the absence of significant fractionation to carbon isotope fractionation (epsilonC) of 16.7 and 3.5-18.9 for PCE and TCE, respectively. Fractionation of both compounds by D. ethenogenes strain 195 (PCE: epsilonC=6.0; TCE: epsilonC=13.7) was similar to the literature data for mixed cultures containing Dehalococcoides spp. D. michiganensis (PCE: no significant fractionation; TCE: epsilonC=3.5) and G. lovleyi sp. strain SZ (PCE no significant fractionation; TCE: epsilonC=8.5) generated the lowest fractionation of all studied strains. Desulfitobacterium sp. strain Viet1 (PCE: epsilonC=16.7) gave the highest enrichment factor for PCE.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Tetracloroetileno/metabolismo , Tricloroetileno/metabolismo , Biodegradación Ambiental , Isótopos de Carbono , Oxidación-Reducción , Incertidumbre
17.
FEMS Microbiol Ecol ; 62(1): 98-107, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17908097

RESUMEN

Carbon stable isotope fractionation of tetrachloroethene (PCE) and trichloroethene (TCE) was investigated during reductive dechlorination. Growing cells of Sulfurospirillum multivorans, Sulfurospirillum halorespirans, or Desulfitobacterium sp. strain PCE-S, the respective crude extracts and the abiotic reaction with cyanocobalamin (vitamin B(12)) were used. Fractionation of TCE (alphaC=1.0132-1.0187) by S. multivorans was more than one order of magnitude higher than values previously observed for tetrachloroethene (PCE) (alphaC=1.00042-1.0017). Similar differences in fractionation were observed during reductive dehalogenation by the close relative S. halorespirans with alphaC=1.0046-1.032 and alphaC=1.0187-1.0229 for PCE and TCE respectively. TCE carbon isotope fractionation (alphaC=1.0150) by the purified PCE-reductive dehalogenase from S. multivorans was more than one order of magnitude higher than fractionation of PCE (alphaC=1.0017). Carbon isotope fractionation of TCE by Desulfitobacterium sp. strain PCE-S (alphaC=1.0109-1.0122) as well as during the abiotic reaction with cyanocobalamin (alphaC=1.0154) was in a similar range to previously reported values for fractionation by mixed microbial cultures. In contrast with previous results with PCE, no effects due to rate limitations, uptake or transport of the substrate to the reactive site could be observed during TCE dechlorination. Our results show that prior to a mechanistic interpretation of stable isotope fractionation factors it has to be carefully verified how other factors such as uptake or transport affect the isotope fractionation during degradation experiments with microbial cultures.


Asunto(s)
Isótopos de Carbono/análisis , Desulfitobacterium/metabolismo , Epsilonproteobacteria/metabolismo , Tetracloroetileno/metabolismo , Tricloroetileno/metabolismo , Biodegradación Ambiental , Marcaje Isotópico , Oxidación-Reducción , Vitamina B 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...