Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int Immunopharmacol ; 122: 110631, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453153

RESUMEN

Psoriasis, which involves mast cells, is a chronic inflammatory skin disorder whose pathophysiology is still not fully understood. We investigated the role of secretory leukocyte protease inhibitor (SLPI), a potential inhibitor of mastocyte serine proteases, on mast cell-dependent processes of relevance to the skin barrier defense in psoriasis. Here, we demonstrate that the dermal mast cells of patients with psoriasis express SLPI but not those of healthy donors. Moreover, SLPI transcripts were found to be markedly upregulated in murine mast cells by mediators derived from psoriasis skin explant cultures. Using mast cells from SLPI-deficient mice and their SLPI+ wild-type controls, we show that SLPI inhibits the activity of serine protease chymase in mastocytes. SLPI was also found to enhance the degranulation of mast cells activated via anti-IgE Abs but not Mrgprb2 ligands. Finally, we demonstrate that the expression and function of Mrgprb2 in mast cells are suppressed by a normal and, to a larger extent, psoriatic skin environment. Together, these findings reveal mechanisms underlying FcεRI- and Mrgprb2-dependent mast cell function that have not been described previously.


Asunto(s)
Psoriasis , Inhibidor Secretorio de Peptidasas Leucocitarias , Animales , Ratones , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Mastocitos/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Psoriasis/metabolismo , Piel
2.
Mol Biol Rep ; 50(3): 2521-2529, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36609751

RESUMEN

BACKGROUND: Chemerin is a chemoattractant protein with adipokine and antimicrobial properties encoded by the retinoic acid receptor responder 2 (RARRES2) gene. Chemerin bioactivity largely depends on carboxyl-terminal proteolytic processing that generates chemerin isoforms with different chemotactic, regulatory, and antimicrobial potentials. While these mechanisms are relatively well known, the role of alternative splicing in generating isoform diversity remains obscure. METHODS AND RESULTS: Using rapid amplification of cDNA ends (RACE) PCR, we determined RARRES2 transcript variants present in mouse and human tissues and identified novel transcript variant 4 of mouse Rarres2 encoding mChem153K. Moreover, analyses of real-time quantitative PCR (RT-qPCR) and publicly-available next-generation RNA sequencing (RNA-seq) datasets showed that different alternatively spliced variants of mouse Rarres2 are present in mouse tissues and their expression patterns were unaffected by inflammatory and infectious stimuli except brown adipose tissue. However, only one transcript variant of human RARRES2 was present in liver and adipose tissue. CONCLUSION: Our findings indicate a limited role for alternative splicing in generating chemerin isoform diversity under all tested conditions.


Asunto(s)
Empalme Alternativo , Quimiocinas , Humanos , Animales , Ratones , Quimiocinas/genética , Quimiocinas/metabolismo , Empalme Alternativo/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Adipoquinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Front Immunol ; 13: 1003970, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330530

RESUMEN

Skin is the largest, environmentally exposed (barrier) organ, capable of integrating various signals into effective defensive responses. The functional significance of interactions among the epidermis and the immune and nervous systems in regulating and maintaining skin barrier function is only now becoming recognized in relation to skin pathophysiology. This review focuses on newly described pathways that involve soluble mediator-mediated crosstalk between these compartments. Dysregulation of these connections can lead to chronic inflammatory diseases and/or pathologic conditions associated with chronic pain or itch.


Asunto(s)
Epidermis , Piel , Humanos , Epidermis/patología , Prurito/metabolismo , Células Epidérmicas/metabolismo , Sistema Nervioso/metabolismo
5.
Curr Issues Mol Biol ; 44(3): 1169-1181, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35723299

RESUMEN

Antimicrobial peptides (AMPs) are important components of innate immunity. Here, we report the antimicrobial properties of a peptide derived from the Male fertility factor kl2 (MFF-kl2) protein of Drosophila melanogaster, which was identified as a functional analog of the mammalian antibacterial chemerin-p4 peptide. The antimicrobial activity of multifunctional chemerin is mainly associated with a domain localized in the middle of the chemerin sequence, Val66-Pro85 peptide (chemerin-p4). Using bioinformatic tools, we found homologs of the chemerin-p4 peptide in the proteome of D. melanogaster. One of them is MFF-p1, which is a part of the MFF kl2 protein, encoded by the gene male fertility factor kl2 (kl-2) located on the long arm of the Y chromosome. The second detected peptide (Z-p1) is a part of the Zizimin protein belonging to DOCK family, which is involved in cellular signaling processes. After testing the antimicrobial properties of both peptides, we found that only MFF-p1 possesses these properties. Here, we demonstrate its antimicrobial potential both in vitro and in vivo after infecting D. melanogaster with bacteria. MFF-p1 strongly inhibits the viable counts of E. coli and B. subtilis after 2 h of treatment and disrupts bacterial cells. The expression of kl-2 is regulated by exposure to bacteria and by the circadian clock.

6.
Front Microbiol ; 12: 742610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803962

RESUMEN

Chemerin-derived peptide Val66-Pro85 (p4) restricts the growth of a variety of skin-associated bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). To better understand the antimicrobial potential of chemerin peptide, we compared p4 activity against MRSA in vitro to cathelicidin LL-37, one of the key endogenous peptides implicated in controlling the growth of S. aureus. The efficacy of p4 was also validated in relevant experimental models of skin pathology, such as topical skin infection with community-acquired MRSA, and in the context of skin inflammatory diseases commonly associated with colonization with S. aureus, such as atopic dermatitis (AD). We showed that p4 collaborates additively with LL-37 in inhibiting the growth of S. aureus, including MRSA, and that p4 was effective in vivo in reducing MRSA burden. p4 was also effective in reducing levels of skin-infiltrating leukocytes in S. aureus-infected AD-like skin. Taken together, our data suggest that p4 is effective in limiting S. aureus and, in particular, MRSA skin infection.

7.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298932

RESUMEN

The members of the ZC3H12/MCPIP/Regnase family of RNases have emerged as important regulators of inflammation. In contrast to Regnase-1, -2 and -4, a thorough characterization of Regnase-3 (Reg-3) has not yet been explored. Here we demonstrate that Reg-3 differs from other family members in terms of NYN/PIN domain features, cellular localization pattern and substrate specificity. Together with Reg-1, the most comprehensively characterized family member, Reg-3 shared IL-6, IER-3 and Reg-1 mRNAs, but not IL-1ß mRNA, as substrates. In addition, Reg-3 was found to be the only family member which regulates transcript levels of TNF, a cytokine implicated in chronic inflammatory diseases including psoriasis. Previous meta-analysis of genome-wide association studies revealed Reg-3 to be among new psoriasis susceptibility loci. Here we demonstrate that Reg-3 transcript levels are increased in psoriasis patient skin tissue and in an experimental model of psoriasis, supporting the immunomodulatory role of Reg-3 in psoriasis, possibly through degradation of mRNA for TNF and other factors such as Reg-1. On the other hand, Reg-1 was found to destabilize Reg-3 transcripts, suggesting reciprocal regulation between Reg-3 and Reg-1 in the skin. We found that either Reg-1 or Reg-3 were expressed in human keratinocytes in vitro. However, in contrast to robustly upregulated Reg-1 mRNA levels, Reg-3 expression was not affected in the epidermis of psoriasis patients. Taken together, these data suggest that epidermal levels of Reg-3 are negatively regulated by Reg-1 in psoriasis, and that Reg-1 and Reg-3 are both involved in psoriasis pathophysiology through controlling, at least in part different transcripts.


Asunto(s)
Psoriasis/metabolismo , Psoriasis/patología , Ribonucleasas/metabolismo , Adulto , Animales , Células Cultivadas , Citocinas/metabolismo , Epidermis/metabolismo , Epidermis/patología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , ARN Mensajero/genética , Piel/metabolismo , Piel/patología
8.
Antioxidants (Basel) ; 10(3)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805777

RESUMEN

Epithelia in the skin, gut and other environmentally exposed organs display a variety of mechanisms to control microbial communities and limit potential pathogenic microbial invasion. Naturally occurring antimicrobial proteins/peptides and their synthetic derivatives (here collectively referred to as AMPs) reinforce the antimicrobial barrier function of epithelial cells. Understanding how these AMPs are functionally regulated may be important for new therapeutic approaches to combat microbial infections. Some AMPs are subject to redox-dependent regulation. This review aims to: (i) explore cysteine-based redox active AMPs in skin and intestine; (ii) discuss casual links between various redox environments of these barrier tissues and the ability of AMPs to control cutaneous and intestinal microbes; (iii) highlight how bacteria, through intrinsic mechanisms, can influence the bactericidal potential of redox-sensitive AMPs.

9.
Front Immunol ; 12: 737231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095834

RESUMEN

Eosinophils and secretory leukocyte protease inhibitor (SLPI) are both associated with Th2 immune responses and allergic diseases, but whether the fact that they are both implicated in these conditions is pathophysiologically related remains unknown. Here we demonstrate that human eosinophils derived from normal individuals are one of the major sources of SLPI among circulating leukocytes. SLPI was found to be stored in the crystalline core of eosinophil granules, and its dislocation/rearrangement in the crystalline core likely resulted in changes in immunostaining for SLPI in these cells. High levels of SLPI were also detected in blood eosinophils from patients with allergy-associated diseases marked by eosinophilia. These include individuals with eosinophilic granulomatosis with polyangiitis (EGPA) and atopic dermatitis (AD), who were also found to have elevated SLPI levels in their plasma. In addition to the circulating eosinophils, diseased skin of AD patients also contained SLPI-positive eosinophils. Exogenous, recombinant SLPI increased numbers of migratory eosinophils and supported their chemotactic response to CCL11, one of the key chemokines that regulate eosinophil migratory cues. Together, these findings suggest a role for SLPI in controlling Th2 pathophysiologic processes via its impact on and/or from eosinophils.


Asunto(s)
Eosinófilos/inmunología , Granulomatosis con Poliangitis/inmunología , Leucocitos/inmunología , Inhibidor Secretorio de Peptidasas Leucocitarias/inmunología , Adulto , Movimiento Celular/inmunología , Dermatitis Atópica/inmunología , Femenino , Humanos , Recuento de Leucocitos/métodos , Masculino , Persona de Mediana Edad
10.
Exp Dermatol ; 30(10): 1418-1427, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33131146

RESUMEN

Antimicrobial peptides (AMPs) are important components of the innate immune system and are involved in skin protection against environmental insults and in wound healing. Herein, we assessed the gene expression of chemerin (Rarres2), cathelicidin CRAMP (Camp), and three ß-defensins (Defb1, Defb3, and Defb14) in mouse skin during light/dark cycle (LD 12:12) and constant darkness (DD). Next, we examined the survival of bacteria applied on the skin at specific times during the day. We found that the expression of Rarres2, Camp, and Defb1 was the highest at 4 h after the beginning of darkness, during high activity of mice. These rhythms, however, were not maintained under DD in the skin but were present in the liver. This indicated that in the case of skin, a circadian input was masked by daily changes of light in the environment. In contrast, Defb3 and Defb14 showed the highest mRNA levels when the mice slept, and these rhythmic mRNA oscillations were maintained under DD. This shows that Rarres2, Camp, and Defb1 levels in the skin are correlated with high locomotor activity in mice and they are controlled by daily changes of light and dark. Alternatively, oscillations in the mRNA levels of Defb3 and Defb14 seem to protect skin and heal wounds during sleep. These rhythms are maintained under DD, indicating that they are regulated by a circadian clock. Our study suggests that daily AMP expression affects the survival of bacteria on the surface of skin, which depends on the phase of AMP cycling.


Asunto(s)
Péptidos Antimicrobianos/genética , Ritmo Circadiano/genética , Piel/microbiología , Animales , Oscuridad , Modelos Animales de Enfermedad , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL
11.
J Immunother Cancer ; 8(2)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907925

RESUMEN

BACKGROUND: Myeloid-derived suppressor cells (MDSC) are a functional myeloid cell subset that includes myeloid cells with immune suppressive properties. The presence of MDSC has been reported in the peripheral blood of patients with several malignant and non-malignant diseases. So far, direct comparison of MDSC across different diseases and Centers is hindered by technical pitfalls and a lack of standardized methodology. To overcome this issue, we formed a network through the COST Action Mye-EUNITER (www.mye-euniter.eu) with the goal to standardize and facilitate the comparative analysis of human circulating MDSC in cancer, inflammation and infection. In this manuscript, we present the results of the multicenter study Mye-EUNITER MDSC Monitoring Initiative, that involved 13 laboratories and compared circulating MDSC subsets across multiple diseases, using a common protocol for the isolation, identification and characterization of these cells. METHODS: We developed, tested, executed and optimized a standard operating procedure for the isolation and immunophenotyping of MDSC using blood from healthy donors. We applied this procedure to the blood of almost 400 patients and controls with different solid tumors and non-malignant diseases. The latter included viral infections such as HIV and hepatitis B virus, but also psoriasis and cardiovascular disorders. RESULTS: We observed that the frequency of MDSC in healthy donors varied substantially between centers and was influenced by technical aspects such as the anticoagulant and separation method used. Expansion of polymorphonuclear (PMN)-MDSC exceeded the expansion of monocytic MDSC (M-MDSC) in five out of six solid tumors. PMN-MDSC expansion was more pronounced in cancer compared with infection and inflammation. Programmed death-ligand 1 was primarily expressed in M-MDSC and e-MDSC and was not upregulated as a consequence of disease. LOX-1 expression was confined to PMN-MDSC. CONCLUSIONS: This study provides improved technical protocols and workflows for the multi-center analysis of circulating human MDSC subsets. Application of these workflows revealed a predominant expansion of PMN-MDSC in solid tumors that exceeds expansion in chronic infection and inflammation.


Asunto(s)
Inflamación/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inmunología , Femenino , Humanos , Masculino
12.
Sci Rep ; 10(1): 13702, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792625

RESUMEN

Chemerin is a chemoattractant protein with adipokine properties encoded by the retinoic acid receptor responder 2 (RARRES2) gene. It has gained more attention in the past few years due to its multilevel impact on metabolism and immune responses. However, mechanisms controlling the constitutive and regulated expression of RARRES2 in a variety of cell types remain obscure. To our knowledge, this report is the first to show that DNA methylation plays an important role in the cell-specific expression of RARRES2 in adipocytes, hepatocytes, and B lymphocytes. Using luciferase reporter assays, we determined the proximal fragment of the RARRES2 gene promoter, located from - 252 to + 258 bp, to be a key regulator of transcription. Moreover, we showed that chemerin expression is regulated in murine adipocytes by acute-phase cytokines, interleukin 1ß and oncostatin M. In contrast with adipocytes, these cytokines exerted a weak, if any, response in mouse hepatocytes, suggesting that the effects of IL-1ß and OSM on chemerin expression is specific to fat tissue. Together, our findings highlight previously uncharacterized mediators and mechanisms that control chemerin expression.


Asunto(s)
Quimiocinas/metabolismo , Metilación de ADN , Regulación de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interleucina-1beta/farmacología , Oncostatina M/farmacología , Regiones Promotoras Genéticas , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Quimiocinas/genética , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Curr Microbiol ; 77(11): 3201-3212, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32813091

RESUMEN

Next-generation sequencing (NGS) technologies together with an improved access to compute performance led to a cost-effective genome sequencing over the past several years. This allowed researchers to fully unleash the potential of genomic and metagenomic analyses to better elucidate two-way interactions between host cells and microbiome, both in steady-state and in pathological conditions. Experimental research involving metagenomics shows that skin resident microbes can influence the cutaneous pathophysiology. Here, we review metagenome approaches to study microbiota at this barrier site. We also describe the consequences of changes in the skin microbiota burden and composition, mostly revealed by these technologies, in the development of common inflammatory skin diseases.


Asunto(s)
Microbiota , Enfermedades de la Piel , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Metagenómica , Microbiota/genética
14.
Front Microbiol ; 11: 1819, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849424

RESUMEN

Chronic inflammatory skin diseases like psoriasis alter the local skin microbiome and lead to complications such as persistent infection with opportunistic/pathogenic bacteria. Disease-associated changes in microbiota may be due to downregulation of epidermal antimicrobial proteins/peptides, such as antimicrobial protein chemerin. Here, we show that chemerin and its bioactive derivatives have differential effects on the viability of different genera of cutaneous bacteria. The lethal effects of chemerin are enhanced by bacterial-derived ROS-induced chemerin peptide oxidation and suppressed by stationary phase sigma factor RpoS. Insight into the mechanisms underlying changes in the composition of cutaneous bacteria during autoreactive skin disease may provide novel ways to mobilize chemerin and its peptide derivatives for maximum antimicrobial efficacy.

16.
Postepy Biochem ; 66(2): 151-159, 2020 06 27.
Artículo en Polaco | MEDLINE | ID: mdl-32700509

RESUMEN

The epithelial tissues have continuous contact with external environment, including pathogenic microorganisms. Endogenous antimicrobial proteins and peptides produced by epithelial cells play a key role in controlling microbial burden and composition, either directly, or by engaging immune cells. These include active derivatives of multifunctional protein chemerin, which is equipped with both antimicrobial and chemotactic function. Given an increasing number of infections caused by antibiotic-insensitive microorganisms, such as methicillin- resistant S. aureus (MRSA), it is important to fully understand how these epithelia-associated microorganisms are controlled at barrier sites, including skin and oral cavity. Chemerin-derived synthetic peptide 4 (p4) covering central Val66-Pro85 chemerin sequence exhibits broad range of antimicrobial activity against skin- and oral cavity- associated bacteria, including MRSA strains, suggesting its therapeutic potential for bacteria-mediated barrier organs pathologies. In this article we present the overview of protective functions of chemerin and chemerin-derived peptides in the epithelial tissues.


Asunto(s)
Antibacterianos/metabolismo , Bacterias/metabolismo , Quimiocinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Farmacorresistencia Bacteriana , Células Epiteliales/citología , Humanos , Staphylococcus aureus Resistente a Meticilina/metabolismo
17.
J Invest Dermatol ; 140(7): 1371-1378.e3, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31945345

RESUMEN

Neutrophils are broadly classified into conventional neutrophils (PMNs) and low-density granulocytes (LDGs). LDGs are better than PMNs at generating neutrophil extracellular traps (NETs), which may contribute to the pathology of autoimmune diseases. We hypothesized that LDGs and PMNs differ in their levels of unrestrained NE that supports NET generation. Here, we show that individuals with psoriasis contain elevated levels of LDGs and that in contrast to PMNs, the LDGs display higher staining for NE and lower staining for its inhibitor SLPI. The heterogeneity between blood-derived LDGs and PMNs was somewhat reminiscent of the differences in the NE and SLPI staining patterns observed in psoriasis skin-infiltrating neutrophils. Distinctive staining for NE and SLPI in LDGs and PMNs did not result from differences in their protein levels nor manifested in higher total proteolytic activity of NE in LDGs; rather, it likely depended on different cytosolic sequestration of these proteins. The disparate profile of NE and SLPI in LDGs and PMNs coincided with altered migratory responses of these cells to cutaneous chemoattractants. Collectively, differential NE and SLPI staining identifies common attributes of both circulating and skin-infiltrating neutrophils, which may guide neutrophil migration to distinct skin regions and determine the localization of LDGs-mediated cutaneous pathology.


Asunto(s)
Trampas Extracelulares/inmunología , Elastasa de Leucocito/metabolismo , Neutrófilos/inmunología , Psoriasis/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Piel/metabolismo , Citoesqueleto de Actina/metabolismo , Adulto , Quimiotaxis , Femenino , Granulocitos/inmunología , Humanos , Recuento de Leucocitos , Leucocitos Mononucleares/inmunología , Lupus Eritematoso Sistémico/inmunología , Masculino , Persona de Mediana Edad , Psoriasis/inmunología , Piel/inmunología , Adulto Joven
18.
J Mol Med (Berl) ; 97(12): 1669-1684, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31786670

RESUMEN

MCPIP1 (Regnase-1, encoded by the ZC3H12A gene) regulates the mRNA stability of several inflammatory cytokines. Due to the critical role of this RNA endonuclease in the suppression of inflammation, Mcpip1 deficiency in mice leads to the development of postnatal multiorgan inflammation and premature death. Here, we generated mice with conditional deletion of Mcpip1 in the epidermis (Mcpip1EKO). Mcpip1 loss in keratinocytes resulted in the upregulated expression of transcripts encoding factors related to inflammation and keratinocyte differentiation, such as IL-36α/γ cytokines, S100a8/a9 antibacterial peptides, and Sprr2d/2h proteins. Upon aging, the Mcpip1EKO mice showed impaired skin integrity that led to the progressive development of spontaneous skin pathology and systemic inflammation. Furthermore, we found that the lack of epidermal Mcpip1 expression impaired the balance of keratinocyte proliferation and differentiation. Overall, we provide evidence that keratinocyte-specific Mcpip1 activity is crucial for the maintenance of skin integrity as well as for the prevention of excessive local and systemic inflammation. KEY MESSAGES: Loss of murine epidermal Mcpip1 upregulates transcripts related to inflammation and keratinocyte differentiation. Keratinocyte Mcpip1 function is essential to maintain the integrity of skin in adult mice. Ablation of Mcpip1 in mouse epidermis leads to the development of local and systemic inflammation.


Asunto(s)
Inflamación/metabolismo , Interleucina-1/metabolismo , Queratinocitos/metabolismo , Ribonucleasas/metabolismo , Piel/metabolismo , Envejecimiento/inmunología , Envejecimiento/patología , Animales , Calgranulina A/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Epidermis/metabolismo , Regulación de la Expresión Génica/genética , Ontología de Genes , Inflamación/inmunología , Queratinas/metabolismo , Ganglios Linfáticos/crecimiento & desarrollo , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ribonucleasas/genética , Piel/inmunología , Piel/patología , Bazo/crecimiento & desarrollo , Bazo/inmunología , Bazo/metabolismo , Transcriptoma/genética
19.
Cytokine Growth Factor Rev ; 49: 70-84, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31473081

RESUMEN

The skin is the largest and the most exposed organ in the body and its defense is regulated at several anatomical levels. Here, we explore how skin layers, including the epidermis, dermis, adipose tissue, and skin appendages, as well as cutaneous microbiota, contribute to the function of skin antimicrobial defense. We highlight recent studies that reveal the differential and complementary responses of skin layers to bacterial, viral, and fungal infection. In particular, we focus on key soluble mediators in the layered skin defense, such as antimicrobial peptides, as well as on lipid antimicrobials, cytokines, chemokines, and barrier-maintaining molecules. We include our own evaluative analyses of transcriptomic datasets of human skin to map the involvement of antimicrobial peptides in skin protection under both steady state and infectious conditions. Furthermore, we explore the versatility of the mechanisms underlying skin defense by highlighting the role of the immune and nervous systems in their interaction with cutaneous microbes, and by illustrating the multifunctionality of selected antimicrobial peptides in skin protection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Queratinocitos/inmunología , Piel/inmunología , Antiinfecciosos , Quimiocinas/inmunología , Citocinas/inmunología , Perfilación de la Expresión Génica , Humanos , Queratinocitos/microbiología , Microbiota , Piel/microbiología
20.
J Biol Chem ; 294(4): 1267-1278, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30504221

RESUMEN

Chemerin is a leukocyte attractant, adipokine, and antimicrobial protein abundantly produced in the skin epidermis. Despite the fact that most of the bactericidal activity present in human skin exudates is chemerin-dependent, just how chemerin shapes skin defenses remains obscure. Here we demonstrate that p4, a potent antimicrobial human chemerin peptide derivative, displays killing activity against pathogenic methicillin-resistant Staphylococcus aureus strains and suppresses microbial growth in a topical skin infection model. Mechanistically, we show that p4 homodimerization is required for maximal bactericidal activity and that an oxidative environment, such as at the skin surface, facilitates p4 disulfide bridge formation, required for the dimerization. p4 led to rapid damage of the bacterial internal membrane and inhibited the interaction between the membranous cytochrome bc1 complex and its redox partner, cytochrome c These results suggest that a chemerin p4-based defense strategy combats bacterial challenges at the skin surface.


Asunto(s)
Antibacterianos/farmacología , Quimiocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Oligopéptidos/farmacología , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Piel/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Piel/metabolismo , Piel/microbiología , Enfermedades Cutáneas Bacterianas/metabolismo , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...