Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2207858119, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914148

RESUMEN

We investigated the electrostatic behavior of ferroelectric liquid droplets exposed to the pyroelectric field of a lithium niobate ferroelectric crystal substrate. The ferroelectric liquid is a nematic liquid crystal, in which almost complete polar ordering of the molecular dipoles generates an internal macroscopic polarization locally collinear to the mean molecular long axis. Upon entering the ferroelectric phase by reducing the temperature from the nematic phase, the liquid crystal droplets become electromechanically unstable and disintegrate by the explosive emission of fluid jets. These jets are mostly interfacial, spreading out on the substrate surface, and exhibit fractal branching out into smaller streams to eventually disrupt, forming secondary droplets. We understand this behavior as a manifestation of the Rayleigh instability of electrically charged fluid droplets, expected when the electrostatic repulsion exceeds the surface tension of the fluid. In this case, the charges are due to the bulk polarization of the ferroelectric fluid, which couples to the pyroelectric polarization of the underlying lithium niobate substrate through its fringing field and solid-fluid interface coupling. Since the ejection of fluid does not neutralize the droplet surfaces, they can undergo multiple explosive events as the temperature decreases.

2.
ACS Macro Lett ; 9(7): 1034-1039, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648614

RESUMEN

Concentrated solutions of blunt-ended DNA oligomer duplexes self-assemble in living polymers and order into lyotropic nematic liquid crystal phase. Using the optical torque provided by three distinct illumination geometries, we induce independent splay, twist, and bend deformations of the DNA nematic and measure the corresponding elastic coefficients K1, K2, and K3, and viscosities ηsplay, ηtwist, and ηbend. We find the viscoelasticity of the system to be remarkably soft, as the viscoelastic coefficients are smaller than in other lyotropic liquid crystals. We find K1 > K3 > K2, in agreement with the elasticity of the nematic phase of flexible polymers, and ηbend > ηsplay > ηtwist a behavior that is nonconventional in the context of chromonic, polymeric, and thermotropic liquid crystals, indicating a possible role of the weakness and reversibility of the DNA aggregates.

3.
Sci Rep ; 9(1): 1062, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705302

RESUMEN

We demonstrate the all optical control of the molecular orientation of nematic liquid crystals confined in microfluidic channels engraved in lithium niobate. Microchannels are obtained by a novel approach based on femtosecond pulse laser micromachining carried on in controlled atmosphere. The combined effect of photovoltaic and pyroelectric fields generated by light in lithium niobate crystals on the liquid crystal orientation, is reported for the first time. The total space charge field and its dependence on the incident light intensity can be controlled by changing the direction of pump light propagation through the microfluidic chip. The results reported in this manuscript demonstrate that liquid crystals and lithium niobate can efficiently be combined in microfluidic configuration, in order to push forward a novel class of optofluidic devices.

4.
Opt Express ; 25(21): 25951-25959, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29041257

RESUMEN

We report the experimental evidence of nonlinear optical response in DNA lyotropic nematic liquid crystals. Pump-probe experiments indicate that the non-linearity is remarkably large. Quantitative assessment of the non-linear optical coefficient by transient optical grating demonstrates that the response is of the same order of the well-known Giant Optical Nonlinearity (GON) of thermotropic nematics. These results represent a further incentive to the current investigation of potential applications of DNA in biophotonics.


Asunto(s)
ADN/química , Cristales Líquidos/química , Dinámicas no Lineales , Fenómenos Ópticos , Anisotropía , Fenómenos Biofísicos , Conformación de Ácido Nucleico
5.
Sci Rep ; 7(1): 4959, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28694448

RESUMEN

Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K22 of thermotropic and lyotropic chiral nematics (N*). The value of K22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.


Asunto(s)
ADN/química , Cristales Líquidos/química , Anisotropía , Elasticidad , Modelos Moleculares , Conformación de Ácido Nucleico , Fenómenos Ópticos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...