Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 529: 1-15, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572879

RESUMEN

In the context of the electroacupuncture (EA) neurobiological mechanisms, we have previously demonstrated the involvement of formyl peptide receptor 2 (FPR2/ALX) in the antihyperalgesic effect of EA. The present study investigated the involvement of peripheral FPR2/ALX in the antihyperalgesic effect of EA on inflammatory cytokines levels, oxidative stress markers and antioxidant enzymes in an animal model of persistent inflammatory pain. Male Swiss mice underwent intraplantar (i.pl.) injection with complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed with von Frey monofilaments. Animals were treated with EA (2/10 Hz, ST36-SP6, 20 minutes) for 4 consecutive days. From the first to the fourth day after CFA injection, animals received i.pl. WRW4 (FPR2/ALX antagonist) or saline before EA. Levels of inflammatory cytokines (TNF, IL-6, IL-4 and IL-10), antioxidant enzymes (catalase and superoxide dismutase), oxidative stress markers (TBARS, protein carbonyl, nitrite/nitrate ratio), and myeloperoxidase activity were measured in paw tissue samples. As previously demonstrated, i.pl. injection of the FPR2/ALX antagonist prevented the antihyperalgesic effect induced by EA. Furthermore, animals treated with EA showed higher levels of IL-10 and catalase activity in the inflamed paw, and these effects were prevented by the antagonist WRW4. EA did not change levels of TNF and IL-6, SOD and MPO activity, and oxidative stress markers. Our work demonstrates that the antihyperalgesic effect of EA on CFA-induced inflammatory pain could be partially associated with higher IL-10 levels and catalase activity, and that these effects may be dependent, at least in part, on the activation of peripheral FPR2/ALX.


Asunto(s)
Electroacupuntura , Receptores de Formil Péptido , Animales , Masculino , Ratones , Antioxidantes/metabolismo , Catalasa , Hiperalgesia/metabolismo , Inflamación/inducido químicamente , Inflamación/terapia , Inflamación/metabolismo , Interleucina-10 , Interleucina-6 , Dolor
2.
Inflammation ; 45(6): 2352-2367, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35689164

RESUMEN

Sepsis is a life-threatening organ dysfunction, which demands notable attention for its treatment, especially in view of the involvement of immunodepressed patients, as the case of patients with diabetes mellitus (DM), who constitute a population susceptible to develop infections. Thus, considering this endocrine pathology as an implicatory role on the immune system, the aim of this study was to show the relationship between this disease and sepsis on neuroinflammatory and neurochemical parameters. Levels of IL-6, IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and mitochondrial respiratory chain complexes were evaluated in the hippocampus and prefrontal cortex 24 h after sepsis by cecal ligation and perforation (CLP) in Wistar rats induced to type 1 diabetes by alloxan (150 mg/kg). It was verified that diabetes implied immune function after 24 h of sepsis, since it contributed to the increase of the inflammatory process with higher production of IL-6 and decreased levels of IL-10 only in the hippocampus. In the same brain area, a several decrease in NGF level and activity of complexes I and II of the mitochondrial respiratory chain were observed. Thus, diabetes exacerbates neuroinflammation and results in mitochondrial impairment and downregulation of NGF level in the hippocampus after sepsis.


Asunto(s)
Diabetes Mellitus , Sepsis , Animales , Ratas , Ratas Wistar , Factor de Crecimiento Nervioso/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Sepsis/metabolismo , Mitocondrias/metabolismo , Modelos Animales de Enfermedad
3.
Exp Gerontol ; 160: 111705, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063617

RESUMEN

Aging is a dynamic process, in which morphological and physiological changes occur at all levels, making the body more vulnerable to acute events. Elderly people are at greater risk of sepsis developing than younger people. Sepsis is a set of serious manifestations throughout the body produced by an infection, leading to events that compromise cell homeostasis as oxidative stress and is associated with organ dysfunction. The aim of this study was to evaluate multi-organ oxidative stress in old rats in an animal model of polymicrobial sepsis. Adult (60d) and old (210d) male Wistar rats were submitted to sepsis by cecal ligation and perforation (CLP) and control group (sham) only by laparotomy. The experimental groups were divided into sham 60d, sham 210d, CLP 60d and CLP 210d. Twenty-four hours after CLP, myeloperoxidase (MPO) activity, oxidative damage to lipids and proteins, superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in the lung, kidney, liver, heart, spleen, quadriceps and diaphragm. Aging potentiated the increase in MPO activity in the after sepsis in the lung, liver and spleen. Lipid oxidative damage occurred in all structures analyzed in the CLP groups, while only in the lung, liver and diaphragm the lipid peroxidation was higher in the CLP 210d group compared to 60d. Regarding protein damage, this potentiation happened only in the lung. The SOD activity in the lung, kidney, spleen and diaphragm there was a significant decrease in the CLP 210d group compared to the sham 60d group while in the CAT only in the lung and kidney. The findings in this study indicate that increasing age potentiated oxidative damage in different organs after sepsis by intensifying the presence of neutrophils, which possibly increased the damage to lipids and proteins with reduced activity of SOD and CAT.


Asunto(s)
Estrés Oxidativo , Sepsis , Animales , Modelos Animales de Enfermedad , Peroxidación de Lípido , Masculino , Ratas , Ratas Wistar , Sepsis/complicaciones , Superóxido Dismutasa/metabolismo
4.
Mol Neurobiol ; 57(11): 4451-4466, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32743736

RESUMEN

Sepsis causes organ dysfunction due to an infection, and it may impact the central nervous system. Neuroinflammation and oxidative stress are related to brain dysfunction after sepsis. Both processes affect microglia activation, neurotrophin production, and long-term cognition. Fish oil (FO) is an anti-inflammatory compound, and lipoic acid (LA) is a universal antioxidant substance. They exert neuroprotective roles when administered alone. We aimed at determining the effect of FO+LA combination on microglia activation and brain dysfunction after sepsis. Microglia cells from neonatal pups were co-treated with lipopolysaccharide (LPS) and FO or LA, alone or combined, for 24 h. Cytokine levels were measured. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) and treated orally with FO, LA, or FO+LA. At 24 h after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of cytokines, myeloperoxidase (MPO) activity, protein carbonyls, superoxide dismutase (SOD), and catalase (CAT) activity. At 10 days after surgery, brain-derived neurotrophic factor (BDNF) levels were determined and behavioral tests were performed. The combination diminished in vitro levels of pro-inflammatory cytokines. The combination reduced TNF-α in the cortex, IL-1ß in the prefrontal cortex, as well as MPO activity, and decreased protein carbonyls formation in all structures. The combination enhanced catalase activity in the prefrontal cortex and hippocampus, elevated BDNF levels in all structures, and prevented behavioral impairment. In summary, the combination was effective in preventing cognitive damage by reducing neuroinflammation and oxidative stress and increasing BDNF levels.


Asunto(s)
Encéfalo/patología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Aceites de Pescado/farmacología , Inflamación/patología , Estrés Oxidativo/efectos de los fármacos , Sepsis/complicaciones , Ácido Tióctico/farmacología , Animales , Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Catalasa/metabolismo , Células Cultivadas , Citocinas/metabolismo , Femenino , Inflamación/complicaciones , Estimación de Kaplan-Meier , Trastornos de la Memoria/complicaciones , Microglía/efectos de los fármacos , Microglía/metabolismo , Prueba de Campo Abierto , Peroxidasa/metabolismo , Carbonilación Proteica/efectos de los fármacos , Ratas Wistar , Superóxido Dismutasa/metabolismo
5.
Exp Gerontol ; 140: 111063, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32827711

RESUMEN

Sepsis is a set of serious manifestations throughout the body produced by an infection, leading to changes that compromise cellular homeostasis and can result in dysfunction of the central nervous system. The elderly have a higher risk of developing sepsis than younger peoples. Under the influence of inflammatory mediators and oxidizing agents released in the periphery as a result of the infectious stimulus, changes occur in the blood-brain barrier (BBB) permeability, with neutrophil infiltration, the passage of toxic compounds, activation of microglia and production of reactive species that results in potentiation of neuroimmune response, with the progression of neuronal damage and neuroinflammation. The objective of this study is to compare BBB permeability and the development of oxidative stress in the hippocampus and prefrontal cortex of young and old rats submitted to polymicrobial sepsis induction. Male Wistar rats grouped into sham (60d), sham (210d), cecal ligation and perforation (CLP) (60d) and CLP (210d) with n = 16 per experimental group were evaluated using the CLP technique to induce sepsis. The brain regions were collected at 24 h after sepsis induction to determine BBB permeability, myeloperoxidase (MPO) activity as marker of neutrophil activation, nitrite/nitrate (N/N) levels as marker of reactive nitrogen species, thiobarbituric acid reactive substances as marker of lipid peroxidation, protein carbonylation as marker of protein oxidation, and activity of antioxidant enzyme catalase (CAT). There was an increase in the BBB permeability in the CLP groups, and this was enhanced with aging in both brain region. MPO activity in the brain regions increased in the CLP groups, along with a hippocampal increase in the CLP 210d group compared to the 60d group. The concentration of N/N in the brain region was increased in the CLP groups. The damage to lipids and proteins in the two structures was enhanced in the CLP groups, while only lipid peroxidation was higher in the prefrontal cortex of the CLP 210d group compared to the 60d. CAT activity in the hippocampus was decreased in both CLP groups, and this was also influenced by age, whereas in the prefrontal cortex there was only a decrease in CAT in the CLP 60d group compared to the sham 60d. These findings indicate that aging potentiated BBB permeability in sepsis, which possibly triggered an increase in neutrophil infiltration and, consequently, an increase in oxidative stress.


Asunto(s)
Barrera Hematoencefálica , Sepsis , Animales , Modelos Animales de Enfermedad , Masculino , Estrés Oxidativo , Permeabilidad , Ratas , Ratas Wistar
6.
An Acad Bras Cienc ; 91(4): e20190434, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31800708

RESUMEN

Sepsis is a life-threatening organ dysfunction induced by a disrupted host response to infecting pathogens. Inflammation and oxidative stress are intrinsically related to sepsis progression and organ failure. Vitamin B6 is an important cellular cofactor for metabolic processes and has anti-inflammatory and antioxidant properties. We aimed at evaluating the effect of vit B6 on inflammation and oxidative stress markers in the liver and lung of rats subjected to a relevant animal model of polymicrobial sepsis. Adult male Wistar rats were submitted to cecal ligation and perforation model and immediately after sepsis induction, vit B6 was administered as a single dose (600 mg/kg, subcutaneous). Twenty-four hours later, the lung and liver were harvest for neutrophil infiltration, oxidative markers to lipids and protein and antioxidant activity of endogenous enzyme. Vitamin B6 diminished neutrophil infiltration in both organs, oxidative markers in the liver and restored catalase activity levels in the lung of septic animals. Vitamin B6 exerts anti-inflammatory and antioxidant effects in peripheral organs after polymicrobial sepsis.


Asunto(s)
Antioxidantes/farmacología , Inflamación/prevención & control , Hígado/patología , Pulmón/patología , Estrés Oxidativo/efectos de los fármacos , Sepsis/complicaciones , Vitamina B 6/farmacología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratas , Ratas Wistar , Sepsis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...