Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274839

RESUMEN

Tropomyosin kinase receptor B (TrkB) has been explored as a therapeutic target for neurological and psychiatric disorders. However, the development of TrkB agonists was hindered by our poor understanding of the TrkB agonist binding location and affinity (both affect the regulation of disorder types). This motivated us to develop a combined computational and experimental approach to study TrkB binders. First, we developed a docking method to simulate the binding affinity of TrkB and binders identified by our magnetic drug screening platform from Gotu kola extracts. The Fred Docking scores from the docking computation showed strong agreement with the experimental results. Subsequently, using this screening platform, we identified a list of compounds from the NIH clinical collection library and applied the same docking studies. From the Fred Docking scores, we selected two compounds for TrkB activation tests. Interestingly, the ability of the compounds to increase dendritic arborization in hippocampal neurons matched well with the computational results. Finally, we performed a detailed binding analysis of the top candidates and compared them with the best-characterized TrkB agonist, 7,8-dyhydroxyflavon. The screening platform directly identifies TrkB binders, and the computational approach allows for the quick selection of top candidates with potential biological activities based on the docking scores.


Asunto(s)
Simulación del Acoplamiento Molecular , Enfermedades Neurodegenerativas , Unión Proteica , Receptor trkB , Receptor trkB/metabolismo , Receptor trkB/agonistas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/agonistas
3.
Biomed Pharmacother ; 173: 116370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458012

RESUMEN

Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6J mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced pSyn levels in both the cortex and hippocampus and attenuated the reduction in TH expression in the striatum seen in A53Tsyn mice. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models.


Asunto(s)
Flavonas , Enfermedad de Parkinson , Tirosina 3-Monooxigenasa , Ratones , Animales , Tirosina 3-Monooxigenasa/metabolismo , Factor 2 Relacionado con NF-E2 , Antioxidantes/farmacología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Cognición , Modelos Animales de Enfermedad
4.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961574

RESUMEN

Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6 mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced cortical and hippocampal levels of pSyn and attenuated the reduction in TH expression in the striatum. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models. Significance Statement: The polymethoxyflavone Gardenin A can improve cognitive and motor function and attenuate both increases in phosphorylated alpha synuclein and reductions in tyrosine hydroxylase expression in A53T alpha synuclein overexpressing mice. These effects may be related to activation of the NRF2-regulated antioxidant response and downregulation of NFkB-dependent inflammatory response by Gardenin A in treated animals. The study also showed excellent brain bioavailability of Gardenin A and modifications of the lipid profile, possibly through interactions between Gardenin A with the lipid bilayer, following oral administration. The study confirms neuroprotective activity of Gardenin A previously reported in toxin induced Drosophila model of Parkinson's disease.

5.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37033702

RESUMEN

Previous research has described promising neuroprotective and/or antioxidant properties for extracts derived from a few Salvia (sage) species. Here, six new Salvia species were isolated during flowering times from plants native to Turkey. Extracts were prepared and then examined for their potential to rescue both anterior and posterior mechanosensory behavioral defects in a transgenic C. elegans Alzheimer's disease model that expresses human amyloid-beta (Aß) peptide (1-42) exclusively in the glutamatergic neurons. Extracts from all six Salvia species rescued anterior touch response defects while only three rescued posterior touch response defects, compared to the Aß controls.

6.
Neurotoxicology ; 96: 1-12, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36822376

RESUMEN

Nature-derived bioactive compounds have emerged as promising candidates for the prevention and treatment of diverse chronic illnesses, including neurodegenerative diseases. However, the exact molecular mechanisms underlying their neuroprotective effects remain unclear. Most studies focus solely on the antioxidant activities of natural products which translate to poor outcome in clinical trials. Current therapies against neurodegeneration only provide symptomatic relief, thereby underscoring the need for novel strategies to combat disease onset and progression. We have employed an environmental toxin-induced Drosophila Parkinson's disease (PD) model as an inexpensive in vivo screening platform to explore the neuroprotective potential of selected dietary flavonoids. We have identified a specific group of flavonoids known as flavones displaying protection against paraquat (PQ)-induced neurodegenerative phenotypes involving reduced survival, mobility defects, and enhanced oxidative stress. Interestingly, the other groups of investigated flavonoids, namely, the flavonones and flavonols failed to provide protection indicating a requirement of specific structural features that confer protection against PQ-mediated neurotoxicity in Drosophila. Based on our screen, the neuroprotective flavones lack a functional group substitution at the C3 and contain α,ß-unsaturated carbonyl group. Furthermore, flavones-mediated neuroprotection is not solely dependent on antioxidant properties through nuclear factor erythroid 2-related factor 2 (Nrf2) but also requires regulation of the immune deficiency (IMD) pathway involving NFκB and the negative regulator poor Imd response upon knock-in (Pirk). Our data have identified specific structural features of selected flavonoids that provide neuroprotection against environmental toxin-induced PD pathogenesis that can be explored for novel therapeutic interventions.


Asunto(s)
Flavonas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/prevención & control , Flavonoides/farmacología , Flavonoides/uso terapéutico , Drosophila , Antioxidantes/farmacología , Neuroprotección , Estrés Oxidativo , Flavonas/farmacología , Flavonas/uso terapéutico , Paraquat/toxicidad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
7.
Nutr Res ; 101: 31-42, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366596

RESUMEN

Alpha-tocotrienol (α-TCT) is a member of the vitamin E family. It has been reported to protect the brain against various pathologies including cerebral ischemia and neurodegeneration. However, it is still unclear if α-TCT exhibits beneficial effects during brain development. We hypothesized that treatment with α-TCT improves intracellular redox homeostasis supporting normal development of neurons. We found that primary hippocampal neurons isolated from rat feti grown in α-TCT-containing media achieved greater levels of neurite complexity compared to ethanol-treated control neurons. Neurons were treated with 1 µM α-TCT for 3 weeks, and media were replaced with fresh α-TCT every week. Treatment with α-TCT increased α-TCT levels (26 pmol/mg protein) in the cells, whereas the control neurons did not contain α-TCT. α-TCT-treated neurons produced adenosine triphosphate (ATP) at a higher rate and increased ATP retention at neurites, supporting formation of neurite branches. Although treatment with α-TCT alone did not change neuronal viability, neurons grown in α-TCT were more resistant to death at maturity. We further found that messenger RNA and protein levels of B-cell lymphoma-extra large (Bcl-xL) are increased by α-TCT treatment without inducing posttranslational cleavage of Bcl-xL. Bcl-xL is known to enhance mitochondrial energy production, which improves neuronal function including neurite outgrowth and neurotransmission. Therefore α-TCT-mediated Bcl-xL upregulation may be the central mechanism of neuroprotection seen in the α-TCT-treated group. In summary, treatment with α-TCT upregulates Bcl-xL and increases ATP levels at neurites. This correlates with increased neurite branching during development and with protection of mature neurons against oxidative stress.


Asunto(s)
Linfoma de Células B , Neuronas , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Hipocampo/metabolismo , Linfoma de Células B/metabolismo , Ratas , Tocotrienoles , Regulación hacia Arriba , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
8.
J Vis Exp ; (179)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35129164

RESUMEN

Chemicals synthesized by plants, fungi, bacteria, and marine invertebrates have been a rich source of new drug hits and leads. Medicines such as statins, penicillin, paclitaxel, rapamycin, or artemisinin, commonly used in medical practice, have been first identified and isolated from natural products. However, the identification and isolation of biologically active specialized metabolites from natural sources is a challenging and time-consuming process. Traditionally, individual metabolites are isolated and purified from complex mixtures, following the extraction of biomass. Subsequently, the isolated molecules are tested in functional assays to verify their biological activity. Here we present the use of cellular membrane affinity chromatography (CMAC) columns to identify biologically active compounds directly from complex mixtures. CMAC columns allow for the identification of compounds interacting with immobilized functional transmembrane proteins (TMPs) embedded in their native phospholipid bilayer environment. This is a targeted approach, which requires knowing the TMP whose activity one intends to modulate with the newly identified small molecule drug candidate. In this protocol, we present an approach to prepare CMAC columns with immobilized tropomyosin kinase receptor B (TrkB), which has emerged as a viable target for drug discovery for numerous nervous system disorders. In this article, we provide a detailed protocol to assemble the CMAC column with immobilized TrkB receptors using neuroblastoma cell lines overexpressing TrkB receptors. We further present the approach to investigate the functionality of the column and its use in the identification of specialized plant metabolites interacting with TrkB receptors.


Asunto(s)
Proteínas Quinasas , Línea Celular , Membrana Celular/metabolismo , Cromatografía de Afinidad/métodos , Proteínas Quinasas/metabolismo
9.
J Pharm Biomed Anal ; 210: 114553, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34968995

RESUMEN

The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. In fact, many currently approved drugs originated from compounds that were first identified in nature. Chemical diversity of natural compounds cannot be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate regulatory protein targets and can be considered evolutionarily-optimized drug-like molecules. Despite this, many pharmaceutical companies have reduced or eliminated their natural product discovery programs in the last two decades. Screening natural products for pharmacologically active compounds is a challenging task that requires high resource commitment. Novel approaches at the early stage of the drug discovery pipeline are needed to allow for rapid screening and identification of the most promising molecules. Here, we review the possible evolutionary roots for drug-like characteristics of numerous natural compounds. Since many of these compounds target evolutionarily conserved cellular signaling pathways, we propose novel, early-stage drug discovery approaches to identify drug candidates that can be used for the potential prevention and treatment of neurodegenerative diseases. Invertebrate in vivo animal models of neurodegenerative diseases and innovative tools used within these models are proposed here as a screening funnel to identify new drug candidates and to shuttle these hits into further stages of the drug discovery pipeline.


Asunto(s)
Productos Biológicos , Enfermedades Neurodegenerativas , Animales , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico
10.
Commun Biol ; 4(1): 162, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547411

RESUMEN

Parkinson's disease is an age-associated neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons from the midbrain. Epidemiological studies have implicated exposures to environmental toxins like the herbicide paraquat as major contributors to Parkinson's disease etiology in both mammalian and invertebrate models. We have employed a paraquat-induced Parkinson's disease model in Drosophila as an inexpensive in vivo platform to screen therapeutics from natural products. We have identified the polymethoxyflavonoid, GardeninA, with neuroprotective potential against paraquat-induced parkinsonian symptoms involving reduced survival, mobility defects, and loss of dopaminergic neurons. GardeninA-mediated neuroprotection is not solely dependent on its antioxidant activities but also involves modulation of the neuroinflammatory and cellular death responses. Furthermore, we have successfully shown GardeninA bioavailability in the fly heads after oral administration using ultra-performance liquid chromatography and mass spectrometry. Our findings reveal a molecular mechanistic insight into GardeninA-mediated neuroprotection against environmental toxin-induced Parkinson's disease pathogenesis for novel therapeutic intervention.


Asunto(s)
Contaminantes Ambientales/toxicidad , Flavonas/farmacología , Neuroprotección/efectos de los fármacos , Enfermedad de Parkinson/patología , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Drosophila , Femenino , Herbicidas/toxicidad , Masculino , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Paraquat/toxicidad
11.
ACS Appl Bio Mater ; 4(8): 6244-6255, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35006910

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.


Asunto(s)
Centella , Evaluación Preclínica de Medicamentos , Fenómenos Magnéticos , Extractos Vegetales , Proteínas Tirosina Quinasas Receptoras
12.
Ecol Evol ; 10(10): 4233-4240, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489592

RESUMEN

Understanding plant-insect interactions is an active area of research in both ecology and evolution. Much attention has been focused on the impact of secondary metabolites in the host plant or fungi on these interactions. Plants and fungi contain a variety of biologically active compounds, and the secondary metabolite profile can vary significantly between individual samples. However, many experiments characterize the biological effects of only a single secondary metabolite or a subset of these compounds.Here, we develop an exhaustive extraction protocol using an accelerated solvent extraction protocol to recover the complete suite of cyclopeptides and other secondary metabolites found in Amanita phalloides (death cap mushrooms) and compare its efficacy to the "Classic" extraction method used in earlier works.We demonstrate that our extraction protocol recovers the full suite of cyclopeptides and other secondary metabolites in A. phalloides unlike the "Classic" method that favors polar cyclopeptides.Based on these findings, we provide recommendations for how to optimize protocols to ensure exhaustive extracts and also the best practices when using natural extracts in ecological experiments.

13.
Front Genet ; 10: 1163, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824568

RESUMEN

Rheumatoid arthritis (RA) is a chronic synovial autoinflammatory disease that destructs the cartilage and bone, leading to disability. The functional regulation of major immunity-related pathways like nuclear factor kappa B (NF-κB), which is involved in the chronic inflammatory reactions underlying the development of RA, remains to be explored. Therefore, this study has adopted statistical and knowledge-based systemic investigations (like gene correlation, semantic similarity, and topological parameters based on graph theory) to study the gene expression status of NF-κB protein family (NKPF) and its regulators in synovial tissues to trace the molecular pathways through which these regulators contribute to RA. A complex protein-protein interaction map (PPIM) of 2,742 genes and 37,032 interactions was constructed from differentially expressed genes (p ≤ 0.05). PPIM was further decomposed into a Regulator Allied Protein Interaction Network (RAPIN) based on the interaction between genes (5 NKPF, 31 seeds, 131 hubs, and 652 bottlenecks). Pathway network analysis has shown the RA-specific disturbances in the functional connectivity between seed genes (RIPK1, ATG7, TLR4, TNFRSF1A, KPNA1, CFLAR, SNW1, FOSB, PARVA, CX3CL1, and TRPC6) and NKPF members (RELA, RELB, NFKB2, and REL). Interestingly, these genes are known for their involvement in inflammation and immune system (signaling by interleukins, cytokine signaling in immune system, NOD-like receptor signaling, MAPK signaling, Toll-like receptor signaling, and TNF signaling) pathways connected to RA. This study, for the first time, reports that SNW1, along with other NK regulatory genes, plays an important role in RA pathogenesis and might act as potential biomarker for RA. Additionally, these genes might play important roles in RA pathogenesis, as well as facilitate the development of effective targeted therapies. Our integrative data analysis and network-based methods could accelerate the identification of novel drug targets for RA from high-throughput genomic data.

14.
Medchemcomm ; 10(6): 867-879, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31303984

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with no cure. Despite intensive research, most of the currently available therapies are only effective in alleviating symptoms with no effect on disease progression. There is an urgent need for new therapeutics to impede disease progression. Natural products are valuable sources of bioactive compounds that can be exploited for novel therapeutic potential in PD pathogenesis. However, rapid screening of plant-derived natural products and characterization of bioactive compounds is costly and challenging. Drosophila melanogaster, commonly known as the fruit fly, has recently emerged as an excellent model for human neurodegenerative diseases, including PD. The high degree of conserved molecular pathways with mammalian models make Drosophila PD models an inexpensive solution to preliminary phases of target validation in the drug discovery pipeline. The present review provides an overview of drug discovery from natural extracts using Drosophila as a screening platform to evaluate the therapeutic potential of phytochemicals against PD.

15.
Nanoscale ; 11(13): 6352-6359, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30887997

RESUMEN

The lack of suitable tools for the identification of potential drug leads from complex matrices is a bottleneck in drug discovery. Here, we report a novel method to screen complex matrices for new drug leads targeting transmembrane receptors. Using α3ß4 nicotinic receptors as a model system, we successfully demonstrated the ability of this new tool for the specific identification and effective extraction of binding compounds from complex mixtures. The formation of cell-membrane coated nanoparticles was confirmed by transmission electron microscopy. In particular, we have developed a direct tool to evaluate the presence of functional α3ß4 nicotinic receptors on the cell membrane. The specific ligand binding to α3ß4 nicotinic receptors was examined through ligand fishing experiments and confirmed by high-performance liquid chromatography coupled with diode-array detection and electrospray ionization mass spectrometry. This tool has a great potential to transform the drug discovery process focusing on identification of compounds targeting transmembrane proteins, as more than 50% of all modern pharmaceuticals use membrane proteins as prime targets.


Asunto(s)
Membrana Celular/química , Cromatografía Líquida de Alta Presión , Compuestos Férricos/química , Nanopartículas del Metal/química , Preparaciones Farmacéuticas/química , Receptores Nicotínicos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Células HEK293 , Humanos , Ligandos , Microscopía Electrónica de Transmisión , Nicotina/análisis , Preparaciones Farmacéuticas/análisis , Receptores Nicotínicos/química , Humo/análisis , Productos de Tabaco/análisis
16.
Prog Med Chem ; 58: 63-117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30879475

RESUMEN

Amyotrophic lateral sclerosis (ALS) is caused by selective and progressive loss of spinal, bulbar and cortical motoneurons and leads to irreversible paralysis, loss of speech, inability to swallow and respiratory malfunctions with the eventual death of the affected individual in a rapid disease course. Several suggested molecular pathways are reviewed including SOD1 gene mutation, protein nitrosylation, phosphorylation and oxidative stress, excitotoxicity, glutamate transporter deprivation, mitochondrial involvement, protein aggregation and motor neuron trophic factors. The role of insulin and its receptor in the brain is described. It is very possible that in 90% of the sporadic ALS cases, the cause of the motor neuron degeneration is different or that multiple mechanisms are involved that would need drugs with multiple mechanisms or action. Several marketed drugs have been selected for clinical trials. Only two drugs have been approved by the FDA as showing positive effect in ALS: Riluzole and Edaravone. Two other drugs that have a significant benefit in ALS are Talampanel and Tamoxifen. The results for modulation of the neurotrophic factor Insulin Growth Factor-1 (IGF1) as a potential treatment are inconclusive. Several compounds are discussed that show a positive effect in the mouse model but which have failed in clinical trials. New approaches using different modalities such as peptides, proteins and stem cells are promising. Our ability to design better drugs would be enhanced by investigating the endogenous factors in neuron death, protein aggregation and oxidative stress that would improve our understanding of the potential pathways that result in neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Inmunoterapia , Fármacos Neuroprotectores/uso terapéutico , Polimorfismo de Nucleótido Simple , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
17.
Eur J Pharm Sci ; 129: 42-57, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30594731

RESUMEN

The treatment of epilepsy remains difficult mostly since almost 30% of patients suffer from pharmacoresistant forms of the disease. Therefore, there is an urgent need to search for new antiepileptic drug candidates. Previously, it has been shown that 4-alkyl-5-substituted-1,2,4-triazole-3-thione derivativatives possessed strong anticonvulsant activity in a maximal electroshock-induced seizure model of epilepsy. In this work, we examined the effect of the chemical structure of the 1,2,4-triazole-3-thione-based molecules on the anticonvulsant activity and the binding to voltage-gated sodium channels (VGSCs) and GABAA receptors. Docking simulations allowed us to determine the mode of interactions between the investigated compounds and binding cavity of the human VGSC. Selected compounds were also investigated in a panel of ADME-Tox assays, including parallel artificial membrane permeability assay (PAMPA), single cell gel electrophoresis (SCGE) and cytotoxicity evaluation in HepG2 cells. The obtained results indicated that unbranched alkyl chains, from butyl to hexyl, attached to 1,2,4-triazole core are essential both for good anticonvulsant activity and strong interactions with VGSCs. The combined in-vivo, in-vitro and in-silico studies emphasize 4-alkyl-5-substituted-1,2,4-triazole-3-thiones as promising agents in the development of new anticonvulsants.


Asunto(s)
Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Triazoles/química , Triazoles/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Simulación por Computador , Electrochoque/métodos , Células HEK293 , Células Hep G2 , Humanos , Ratones , Simulación del Acoplamiento Molecular/métodos , Receptores de GABA-A/metabolismo , Convulsiones/tratamiento farmacológico
18.
Sci Rep ; 6: 33302, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27641999

RESUMEN

Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic ß-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in ß-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in ß-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism.


Asunto(s)
Glucosa/metabolismo , Hepatocitos/metabolismo , Células Secretoras de Insulina/metabolismo , Receptor Cannabinoide CB1/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Perfilación de la Expresión Génica/métodos , Hepatocitos/efectos de los fármacos , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Enfermedades Metabólicas/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirazoles/metabolismo , Pirazoles/farmacología , Receptor Cannabinoide CB1/genética , Rimonabant , Homología de Secuencia de Aminoácido , Sulfonamidas/metabolismo , Sulfonamidas/farmacología
19.
Nat Prod Rep ; 33(10): 1131-45, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27367973

RESUMEN

Covering: 2000 to 2016Natural product extracts are a rich source of bioactive compounds. As a result, the screening of natural products for the identification of novel biologically active metabolites has been an essential part of several drug discovery programs. It is estimated that more than 70% of all drugs approved from 1981 and 2006, were either derived from or structurally similar to nature based compounds indicating the necessity for the development of a rapid method for the identification of novel compounds from plant extracts. The screening of biological matrices for the identification of novel modulators is nevertheless still challenging. In this review we discuss current techniques in phytochemical analysis and the identification of biologically active components.


Asunto(s)
Productos Biológicos/química , Descubrimiento de Drogas , Estructura Molecular , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA