Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 20(3): 1019-1035, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38236138

RESUMEN

A novel approach based on a coarse-grained representation of topological graphs is proposed for the automatic analysis of molecular dynamics (MD) trajectories of hydrogen-bonded (H-Bonded) flexible biomolecules. Herein, our approach models an H-Bonded biomolecule by its H-Bonded cycles and its graph of cycles in which the vertices and links represent the intersections between these cycles. We propose a methodology in which each identified conformer/isomer from the MD is represented by a well-chosen set of H-Bonded cycles called a minimum cycle basis. The key component is the "polycycles" that distinguish the cycles that play the same polymorphic role in the molecule from the ones that lead to an actual conformational change of the molecule. The relevance of our proposed method is evaluated on MD trajectories of gas-phase biomolecules, for which the covalent bonds are unchanged over time and only the hydrogen bonds change over time. The polygraphs and their time evolution are shown to reveal the dynamicity of the metastructure(s) of the H-Bonded biomolecules while providing polymorphic information on the cycles. Such information on the dynamics and changes in the H-bond network, as some cycles change identity while retaining the same role in the overall structure, is not easily captured at the atomic level of representation. Such information can instead be captured by polymorphic cycles.


Asunto(s)
Hidrógeno , Simulación de Dinámica Molecular , Isomerismo
2.
J Phys Chem A ; 127(22): 4832-4837, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37218988

RESUMEN

Amino acids and peptides generally exhibit zwitterionic forms with salt bridge (SB) structures in solution but charge-solvated (CS) motifs in the gas phase. Here, we report a study of non-covalent complexes of the protonated amino acid arginine, ArgH+(H2O)n (n = 1-5), produced in the gas phase from an aqueous solution with a controlled number of retained water molecules. These complexes were probed by cold ion spectroscopy and treated by quantum chemistry. The spectroscopic changes induced upon gradual dehydration of arginine were assigned by structural calculations to the transition from SB to CS geometries. SB conformers appear to be present for the complexes with as few as 3 retained water molecules, although energetically CS structures should become prevailing already for ArgH+ with 7-8 water molecules. We attribute the revealed kinetic trapping of arginine in native-like zwitterionic forms to evaporative cooling of the hydrated complexes to as low as below 200 K.

3.
J Phys Chem Lett ; 10(12): 3339-3345, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31141365

RESUMEN

Understanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated ß-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more effective than for the ß derivative. Markedly, the main conformers found in the gas phase and solution are characterized by the lack of the stabilizing anomeric effect. From a mechanistic perspective, both rotational spectroscopy and solid-state nuclear magnetic resonance (NMR) corroborate that αâ€¯â†”â€¯ß or furanose ↔ pyranose interconversions are prevented in the gas phase. Combining microwave (MW) and NMR results provides a powerful method for unraveling the water role in the conformational preferences of challenging molecules, such as flexible monosaccharides.

4.
J Chem Theory Comput ; 11(3): 871-83, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26579741

RESUMEN

Combined theoretical DFT-MD and RRKM methodologies and experimental spectroscopic infrared predissociation (IRPD) strategies to map potential energy surfaces (PES) of complex ionic clusters are presented, providing lowest and high energy conformers, thresholds to isomerization, and cluster formation pathways. We believe this association not only represents a significant advance in the field of mapping minima and transition states on the PES but also directly measures dynamical pathways for the formation of structural conformers and isomers. Pathways are unraveled over picosecond (DFT-MD) and microsecond (RRKM) time scales while changing the amount of internal energy is experimentally achieved by changing the loss channel for the IRPD measurements, thus directly probing different kinetic and isomerization pathways. Demonstration is provided for Li(+)(H2O)3,4 ionic clusters. Nonstatistical formation of these ionic clusters by both direct and cascade processes, involving isomerization processes that can lead to trapping of high energy conformers along the paths due to evaporative cooling, has been unraveled.


Asunto(s)
Litio/química , Simulación de Dinámica Molecular , Teoría Cuántica , Agua/química , Cinética , Propiedades de Superficie , Factores de Tiempo
5.
J Phys Condens Matter ; 26(24): 244106, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24863440

RESUMEN

The structural organization of water at a model of amorphous silica-liquid water interface is investigated by ab initio molecular dynamics (AIMD) simulations at room temperature. The amorphous surface is constructed with isolated, H-bonded vicinal and geminal silanols. In the absence of water, the silanols have orientations that depend on the local surface topology (i.e. presence of concave and convex zones). However, in the presence of liquid water, only the strong inter-silanol H-bonds are maintained, whereas the weaker ones are replaced by H-bonds formed with interfacial water molecules. All silanols are found to act as H-bond donors to water. The vicinal silanols are simultaneously found to be H-bond acceptors from water. The geminal pairs are also characterized by the formation of water H-bonded rings, which could provide special pathways for proton transfer(s) at the interface. The first water layer above the surface is overall rather disordered, with three main domains of orientations of the water molecules. We discuss the similarities and differences in the structural organization of the interfacial water layer at the surface of the amorphous silica and at the surface of the crystalline (0 0 0 1) quartz surface.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Dióxido de Silicio/química , Agua/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Protones , Silanos/química , Propiedades de Superficie
6.
Angew Chem Int Ed Engl ; 53(14): 3663-6, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24574197

RESUMEN

Vibrational spectroscopy provides an important probe of the three-dimensional structures of peptides. With increasing size, these IR spectra become very complex and to extract structural information, comparison with theoretical spectra is essential. Harmonic DFT calculations have become a common workhorse for predicting vibrational frequencies of small neutral and ionized gaseous peptides. Although the far-IR region (<500 cm(-1)) may contain a wealth of structural information, as recognized in condensed phase studies, DFT often performs poorly in predicting the far-IR spectra of peptides. Here, Born-Oppenheimer molecular dynamics (BOMD) is applied to predict the far-IR signatures of two γ-turn peptides. Combining experiments and simulations, far-IR spectra can provide structural information on gas-phase peptides superior to that extracted from mid-IR and amide A features.


Asunto(s)
Amidas/química , Gases/química , Péptidos/química , Espectrofotometría Infrarroja/métodos , Simulación de Dinámica Molecular , Vibración
7.
Artículo en Inglés | MEDLINE | ID: mdl-23810567

RESUMEN

The structures of Cl(-)-(Methanol)1,2 clusters have been unraveled combining Infrared Predissociation (IR-PD) experiments and DFT-based molecular dynamics simulations (DFT-MD) at 100 K. The dynamical IR spectra extracted from DFT-MD provide the initial 600 cm(-1) large anharmonic red-shift of the O-H stretch from uncomplexed methanol (3682 cm(-1)) to Cl(-)-(Methanol)1 complex (3085 cm(-1)) as observed in the IR-PD experiment, as well as the subtle supplementary blue- and red-shifts of the O-H stretch in Cl(-)-(Methanol)2 depending on the structure. The anharmonic vibrational calculations remarkably provide the 100 cm(-1) O-H blue-shift when the two methanol molecules are simultaneously organized in the anion first hydration shell (conformer 2A), while they provide the 240 cm(-1) O-H red-shift when the second methanol is in the second hydration shell of Cl(-) (conformer 2B). RRKM calculations have also shown that 2A/2B conformers interconvert on a nanosecond time-scale at the estimated 100 K temperature of the clusters formed by evaporative cooling of argon prior to the IR-PD process.


Asunto(s)
Cloro/química , Metanol/química , Aniones/química , Simulación de Dinámica Molecular , Movimiento (Física) , Teoría Cuántica , Espectrofotometría Infrarroja
9.
Phys Chem Chem Phys ; 15(31): 13005-12, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23817675

RESUMEN

A computational study of peptide bond formation from gas-phase ion-molecule reactions has been carried out. We have considered the reaction between protonated glycine and neutral glycine, as well as the reaction between two neutral glycine molecules for comparison purposes. Two different mechanisms, concerted and stepwise, were studied. Both mechanisms show significant energy barriers for the neutral reaction. The energy requirements for peptide bond formation are considerably reduced upon protonation of one of the glycine molecules. For the reaction between neutral glycine and N-protonated glycine the lowest energy barrier is observed for the concerted mechanism. For the reaction between neutral glycine and protonated glycine at carbonyl oxygen, the preferred mechanism is the stepwise one, with a relatively small energy barrier (23 kJ mol(-1) at 0 K) and leading to the lowest-lying protonated glycylglycine isomer. In the case that the reaction could be initiated by protonated glycine at hydroxyl oxygen the process would be barrier-free and clearly exothermic. In that case peptide bond formation could take place even under interstellar conditions if glycine is present in space.


Asunto(s)
Péptidos/química , Teoría Cuántica , Gases/química , Glicina/química
10.
J Am Chem Soc ; 135(7): 2845-52, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23346993

RESUMEN

Fructose has been examined under isolation conditions using a combination of UV ultrafast laser vaporization and Fourier-transform microwave (FT-MW) spectroscopy. The rotational spectra for the parent, all (six) monosubstituted (13)C species, and two single D species reveal unambiguously that the free hexoketose is conformationally locked in a single dominant ß-pyranose structure. This six-membered-chair skeleton adopts a (2)C(5) configuration (equivalent to (1)C(4) in aldoses). The free-molecule structure sharply contrasts with the furanose form observed in biochemically relevant polysaccharides, like sucrose. The structure of free fructose has been determined experimentally using substitution and effective structures. The enhanced stability of the observed conformation is primarily attributed to a cooperative network of five intramolecular O-H···O hydrogen bonds and stabilization of both endo and exo anomeric effects. Breaking a single intramolecular hydrogen bond destabilizes the free molecule by more than 10 kJ mol(-1). The structural results are compared to ribose, recently examined with rotational resolution, where six different conformations coexist with similar conformational energies. In addition, several DFT and ab initio methods and basis sets are benchmarked with the experimental data.


Asunto(s)
Fructosa/química , Teoría Cuántica , Conformación Molecular
11.
Phys Chem Chem Phys ; 14(33): 11724-36, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22828785

RESUMEN

In this paper we report different theoretical approaches to study the gas-phase unimolecular dissociation of the doubly-charged cation [Ca(urea)](2+), in order to rationalize recent experimental findings. Quantum mechanical plus molecular mechanical (QM/MM) direct chemical dynamics simulations were used to investigate collision induced dissociation (CID) and rotational-vibrational energy transfer for Ar + [Ca(urea)](2+) collisions. For the picosecond time-domain of the simulations, both neutral loss and Coulomb explosion reactions were found and the differences in their mechanisms elucidated. The loss of neutral urea subsequent to collision with Ar occurs via a shattering mechanism, while the formation of two singly-charged cations follows statistical (or almost statistical) dynamics. Vibrational-rotational energy transfer efficiencies obtained for trajectories that do not dissociate during the trajectory integration were used in conjunction with RRKM rate constants to approximate dissociation pathways assuming complete intramolecular vibrational energy redistribution (IVR) and statistical dynamics. This statistical limit predicts, as expected, that at long time the most stable species on the potential energy surface (PES) dominate. These results, coupled with experimental CID from which both neutral loss and Coulomb explosion products were obtained, show that the gas phase dissociation of this ion occurs by multiple mechanisms leading to different products and that reactivity on the complicated PES is dynamically complex.

12.
J Org Chem ; 77(9): 4312-22, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22409504

RESUMEN

The present work reports an energetic and structural study of 2-fluoro-, 3-fluoro-, and 4-fluorobenzonitrile. The standard molar enthalpies of formation, in the condensed phase, of the three isomers were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K. The standard molar enthalpies of vaporization or sublimation (for 4-fluorobenzonitrile), at T = 298.15 K, were measured using high-temperature Calvet microcalorimetry. The combination of these two parameters yields the standard molar enthalpies of formation in the gaseous phase. The vapor-pressure study of the referred compounds was performed by a static method, and the enthalpies of phase transition derived from the application of the Clarke and Glew equation. Theoretically estimated gas-phase enthalpies of formation, basicities, proton and electron affinities, and adiabatic ionization enthalpies were calculated from the G3MP2B3 level of theory. In order to evaluate the electronic properties, the geometries were reoptimized at MP2/cc-pVTZ level, and the QTAIM and NICS were computed. On the basis of the donor-acceptor system, another approach for evaluating the electronic effect for these compounds, using the NBO is suggested. The UV-vis spectroscopy study for the three isomers was performed. The intensities and the band positions were correlated with the thermodynamic properties calculated computationally.

13.
J Phys Chem A ; 116(11): 3014-22, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22352296

RESUMEN

A computational study of the reaction of P(+)((3)P) with acetylene has been carried out. The only exothermic products correlating with the reactants are PCCH(+)((2)Π) + H((2)S). Two different pathways leading to these products that are apparently barrier-free have been found. Both pathways involve isomerization into open-chain intermediates followed by direct elimination of a hydrogen atom. The possibility of spin-crossing has been considered because the species on the singlet surface are considerably more stable than those on the triplet one. On the singlet surface, there are other possible channels for the reaction, namely, cyclic PC(2)H(+)((2)A') + H((2)S) and CCP(+)((1)Σ) + H(2) ((1)Σ(g)(+)). A computational kinetic study shows that, in agreement with the experimental evidence, the major products are PCCH(+)((2)Π) + H((2)S) at all temperatures. Only at very high temperatures is CCP(+)((1)Σ) + H(2) ((1)Σ(g)(+)) formed in non-negligible amounts. Therefore, only PCCH(+) should be formed in the interstellar medium.

14.
J Org Chem ; 76(10): 3754-64, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21486007

RESUMEN

Thermodynamic properties of 3- and 4-phenoxyphenol have been determined by using a combination of calorimetric and effusion techniques as well as by high-level ab initio molecular orbital calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation in the condensed and gas states, Δ(f)H(m)°(cr or l) and Δ(f)H(m)°(g), at T = 298.15 K, of 3- and 4-phenoxyphenol were derived from their energies of combustion in oxygen, measured by a static bomb calorimeter, and from the enthalpies of vaporization or sublimation derived respectively by Calvet microcalorimetry for the 3-phenoxyphenol and by Knudsen effusion technique for the 4-phenoxyphenol. The theoretically estimated gas-phase enthalpies of formation were calculated from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. Furthermore, this composite approach was also used to obtain information about the gas-phase acidities, gas-phase basicities, proton and electron affinities, adiabatic ionization enthalpies, and, finally, O−H bond dissociation enthalpies. The good agreement between the G3MP2B3-derived values and the experimental gas-phase enthalpies of formation for the 3- and 4-phenoxyphenol gives confidence to the estimate concerning the 2-phenoxyphenol isomer, which was not experimentally studied, and to the estimates concerning the radical and the anion. Additionally, the experimental values of gas-phase enthalpies of formation were also compared with estimates based on the empirical scheme developed by Cox.

15.
J Am Chem Soc ; 132(51): 18067-77, 2010 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-21141855

RESUMEN

The role of water in the structural change of nicotine from its inactive form in the gas phase to its bioactive form in aqueous solution has been investigated by two complementary theoretical approaches, i.e., geometry optimizations and molecular dynamics. Structures of the lowest-energy nicotineH(+)-(H(2)O)(n) complexes protonated either on the pyridine (inactive form) or pyrrolidine (active form) ring have been calculated, as well as the free-energy barriers for the proton-transfer tautomerization between the two cycles. These structures show chains of 2-4 water molecules bridging the two protonation sites. The room-temperature free-energy barrier to tautomerization along the minimum-energy path from the pyridine to the pyrrolidine cycle drops rapidly when the number of water molecules increases from 0 to 4, but still remains rather high (16 kJ/mol with four water molecules), indicating that the proton transfer is a rather difficult and rare event. We compare results obtained through this explicit water molecule approach to those obtained by means of continuum methods. Car-Parrinello molecular dynamics (CPMD) simulations of the proton-transfer process in bulk with explicit water molecules have been conducted at room temperature. No spontaneous proton transfers have been observed during the dynamics, and biased CPMD simulations have therefore been performed in order to measure the free-energy profile of the proton transfer in the aqueous phase and to reveal the proton-transfer mechanism through water bridges. The MD bias involves pulling the proton from the pyridine ring to the surrounding bulk. Dynamics show that this triggers the tautomerization toward the pyrrolidine ring, proceeding without energy barrier. The proton transfer is extremely fast, and protonation of the pyrrolidine ring was achieved within 0.5 ps. CPMD simulations confirmed the pivotal role played by the water molecules that bridge the two protonation sites of nicotine within the bulk of the surrounding water.


Asunto(s)
Nicotina/química , Protones , Agua/química , Entropía , Estructura Molecular , Nitratos/química
16.
J Phys Chem B ; 114(40): 12914-25, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20860353

RESUMEN

This work reports the experimental and computational thermochemical study performed on three difluorinated nitrobenzene isomers: 2,4-difluoronitrobenzene (2,4-DFNB), 2,5-difluoronitrobenzene (2,5-DFNB), and 3,4-difluoronitrobenzene (3,4-DFNB). The standard (p° = 0.1 MPa) molar enthalpies of formation in the liquid phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. A static method was used to perform the vapor pressure study of the referred compounds allowing the construction of the phase diagrams and determination of the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation, and fusion for two of the isomers (2,4-DFNB and 3,4-DFNB). For 2,5-difluoronitrobenzene, only liquid vapor pressures were measured enabling the determination of the standard molar enthalpies of vaporization. Combining the thermodynamic parameters of the compounds studied, the following standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived: Δ(f)H(m)° (2,4-DFNB, g) = -(296.3 ± 1.8) kJ · mol⁻¹, Δ(f)H(m)° (2,5-DFNB, g) = -(288.2 ± 2.1) kJ · mol⁻¹, and Δ(f)H(m)° (3,4-DFNB, g) = -(302.4 ± 2.1) kJ · mol⁻¹. Using the empirical scheme developed by Cox, several approaches were evaluated in order to identify the best method for estimating the standard molar gas phase enthalpies of formation of these compounds. The estimated values were compared to the ones obtained experimentally, and the approach providing the best comparison with experiment was used to estimate the thermodynamic behavior of the other difluorinated nitrobenzene isomers not included in this study. Additionally, the enthalpies of formation of these compounds along with the enthalpies of formation of the other isomers not studied experimentally, i.e., 2,3-DFNB, 2,6-DFNB, and 3,5-DFNB, were estimated using the composite G3MP2B3 approach together with adequate gas-phase working reactions. Furthermore, we also used this computational approach to calculate the gas-phase basicities, proton and electron affinities, and, finally, adiabatic ionization enthalpies.


Asunto(s)
Nitrobencenos/química , Calorimetría , Gases/química , Isomerismo , Transición de Fase , Termodinámica , Volatilización
17.
Phys Chem Chem Phys ; 12(40): 13037-46, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20820590

RESUMEN

A multi-state complete active space second order perturbation theory (MS-CASPT2) study on the valence singlet electronic excited states of formic acid dimer is presented. The electronic spectrum of this dihydrogen bonded system is dominated by nπ* and ππ* intramonomer and charge transfer excitations and consists of a very intense ππ* transition at 8.25 eV and three weaker nπ*(2×) and ππ*(1×) electronic excitations at 6.21 eV, 9.13 eV, and 9.93 eV, respectively. The characteristic nπ*-nπ*-ππ*-ππ*… pattern found in the formic acid dimer electronic spectrum is altered when a sulfur atom is introduced in the molecule. Furthermore, carbonyl-by-thiocarbonyl or hydroxyl-by-thiohydroxyl substitution is predicted to strongly affect the intensity of the above electronic transitions. The effect of oxygen-by-sulfur substitution on the geometry of the first excited state (S(1)) has been investigated at the CC2 and CASSCF levels of theory. Although the two methods qualitatively predict the same geometrical changes upon nπ* excitation, the geometries of the S(1) state are found to differ considerably between the two levels.


Asunto(s)
Formiatos/química , Compuestos de Sulfhidrilo/química , Dimerización , Electrones , Enlace de Hidrógeno , Oxígeno/química , Teoría Cuántica
18.
J Phys Chem B ; 114(23): 7909-19, 2010 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-20499892

RESUMEN

The present work reports the thermodynamic study performed on three monofluorinated nitrobenzene derivatives by a combination of experimental techniques and computational approaches. The standard (p degrees = 0.1 MPa) molar enthalpies of formation in the liquid phase of the three isomers of fluoronitrobenzene were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The vapor pressure study of the referred compounds was done by a static method and, from the obtained results, the phase diagrams were elaborated, and the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation and fusion, at T = 298.15 K, were determined. The combination of some of the referred thermodynamic parameters yielded the standard (p degrees = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, of the studied compounds: Delta(f)H(m)(o) (2-fluoronitrobenzene, g) = -(102.4 +/- 1.5) kJ x mol(-1), Delta(f)H(m)(o) (3-fluoronitrobenzene, g) = -(128.0 +/- 1.7) kJ x mol(-1), and Delta(f)H(m)(o) (4-fluoronitrobenzene, g) = -(133.9 +/- 1.4) kJ x mol(-1). Using the empirical scheme developed by Cox, values of standard molar enthalpies of formation in the gaseous phase were estimated and afterwards compared with the ones obtained experimentally, and both were interpreted in terms of the molecular structure of the compounds. The theoretically estimated gas-phase enthalpies of formation were calculated from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. The computed values compare very well with the experimental results obtained in this work and show that 4-fluoronitrobenzene is the most stable isomer from the thermodynamic point of view. Furthermore, this composite approach was also used to obtain information about the gas-phase basicities, proton and electron affinities and, finally, adiabatic ionization enthalpies.

19.
Phys Chem Chem Phys ; 12(14): 3501-10, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20355291

RESUMEN

Following our work on the phosphorylated deprotonated serine amino acid pSerH(-) [J. Chem. Theory Comput., 2009, 5, 2388], we investigate here the room temperature infrared spectroscopy of pSerH(+) (phosphorylated protonated serine) in the gas phase in relation with IR-MPD experiment. To that end, DFT-based Car-Parrinello molecular dynamics (DFTMD) are performed, giving a direct probe of vibrational anharmonicities. Agreement and disagreement with the experiment are explored in the light of DFT/functional, vibrational mode couplings and potential energy surface anharmonicities. Trends on the phosphate vibrational signatures in relation with its protonation state and environment are analysed, for the purpose of transferability into more complex phosphorylated peptide chains.


Asunto(s)
Aminoácidos/química , Simulación de Dinámica Molecular , Modelos Moleculares , Fosforilación
20.
J Phys Chem A ; 110(37): 10912-20, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16970389

RESUMEN

A computational study of the N(4S) + CH3 reaction has been carried out. The reactants approach through an attractive potential surface leading to an intermediate, H3CN, whose formation does not involve any barrier. In agreement with the experimental results, the dominant channel for this reaction is H2CN+H. The theoretically estimated rate coefficient for the overall process at 298 K is 9.1 x 10(-12) cm3 s(-1) molecule(-1), which is nearly 1 order of magnitude lower than the experimental result, but also much larger than those computed for the reactions of ground-state nitrogen atoms with halomethyl radicals. The analysis of the singlet potential energy surface, and the corresponding computational kinetic study, shows that for the reaction of excited nitrogen atoms with methyl radicals, the preferred product from the kinetic point of view is also H2CN+H, but in this case production of HCN is significant (with branching ratios around 0.185). According to our calculations, spin-forbidden processes are highly unlikely for the N(4S) + CH3 reaction. However, further evolution of the preferred products, H2CN+H, might explain the experimental observation of hydrogen cyanide as a minor product in this reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...