Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 30(1): 14-26, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38214892

RESUMEN

In this study, a novel application of synchrotron X-ray nanotomography based on high-resolution full-field transmission X-ray microscopy for characterizing the structure and morphology of micrometric hollow polymeric fibers is presented. By employing postimage analysis using an open-source software such as Tomviz and ImageJ, various key parameters in fiber morphology, including diameter, wall thickness, wall thickness distribution, pore size, porosity, and surface roughness, were assessed. Electrospun polycaprolactone fibers with micrometric diameters and submicrometric features with induced porosity via gas dissolution foaming were used to this aim. The acquired synchrotron X-ray nanotomography data were analyzed using two approaches: 3D tomographic reconstruction and 2D radiographic projection-based analysis. The results of the combination of both approaches demonstrate unique capabilities of this technique, not achievable by other available techniques, allowing for a full characterization of the internal and external morphology and structure of the fibers as well as to obtain valuable qualitative insights into the overall fiber structure.

2.
Microsc Microanal ; : 1-12, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35300749

RESUMEN

Three independent analysis methods were developed to investigate the distribution of solid mass in foams analyzed by X-ray tomography with effective pixel sizes larger than the thickness of the solid network (sub-pixel conditions). Validation of the methods was achieved by a comparison with the results obtained employing high-resolution tomography for the same set of foams. The foams showed different solid mass distribution, which varied from being preferentially located on the edges, with a fraction of mass in the struts nearing 0.6, to materials in which the fraction of mass in the struts was low, under 0.15. In all cases, the accuracy of the proposed approaches was greater for materials with a higher fraction of mass in the struts. The method based on deconvolution of the attenuation probability density function yielded the closest results to the high-resolution characterizations. In contrast, analysis of the solid matrix thickness distribution after watershed segmentation, and binarization of high thickness regions (struts segmentation) required normalization through macroscopic measurements and revealed higher deviations with respect to the high-resolution results. However, segmentation-based methods allowed investigation of the heterogeneity of the fraction of mass in the struts along the sample.

3.
Polymers (Basel) ; 12(5)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344876

RESUMEN

The use of polymeric nanocomposites has arisen as a promising solution to take advantage of the properties of nanoparticles (NPs) in diverse applications (e.g., water treatment, catalysis), while overcoming the drawbacks of free-standing nanoparticles (e.g., aggregation or accidental release). In most of the cases, the amount and size of the NPs will affect the stability of the composite as well as their performance. Therefore, a detailed characterization of the NPs present on the nanocomposites, including their quantification, is of vital importance for the optimization of these systems. However, the determination of the NPs load is often carried out by destructive techniques such as TGA or ICP-OES, the development of non-invasive approaches to that aim being necessary. In this work, the amount of silver NPs synthesized directly on the surface of melamine (ME) foams is studied using two non-invasive approaches: colorimetry and X-ray radiography. The obtained results show that the amount of silver NPs can be successfully determined from the luminosity and global color changes of the surface of the foams, as well as from the X-ray attenuance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...