Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837357

RESUMEN

BACKGROUND: Chestnut flour plays an important role in the production of bread, bakery products, and gluten-free foods. Most of the references in the literature focus on the drying process itself and not on the effects of the drying and milling processes. Moreover, the literature is lacking recommendations regarding optimal moisture content and milling speed, thus motivating the present study. The first aim is to understand the chestnut drying process through an in-depth evaluation of drying kinetics; the second aim is to assess the effects of three different moisture content (2%, 4% and 6%) and three different stone rotational speeds (120, 220 and 320 rpm) on operative milling parameters (flour yield, milling time, energy consumption, temperature increase, average power, specific milling energy), flour particle size distribution, and chestnut flours characteristics. RESULTS: The results show that moisture content and stone rotational speed have statistically-significant effects on milling operative parameters, flour particle size and chestnut flour composition. In particular, stone rotational speed affected almost all the tested variables (mill operative parameters, flour particle size distribution, and flour characteristics). Therefore, as the stone rotational speed increases, energy consumption, average power, specific energy, and damaged starch content significantly increase. CONCLUSION: These findings clearly show that moisture content and stone rotational speed are powerful tools that allow the exploiation of the milling process to modulate the characteristics of the obtained flours. In conclusion, two different approaches for chestnut milling were suggested depending on the type of flour to be produced. © 2024 Society of Chemical Industry.

2.
Foods ; 11(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053941

RESUMEN

Many types of baked goods are firmly rooted in the food habits of many people in different countries. Although there have been great strides in improving milling, kneading, and baking, given the lack of essential studies, further steps forward need to be taken to understand the effects of storage time and environmental storage conditions, thus motivating this work. The aim of this study is to assess the effects of storage time, using one-way ANOVA, and environmental storage conditions (environmental temperature and humidity), using MOLS analysis, on flour composition, dough rheology, and biscuit characteristics. Seven levels of storage time were tested: T0 (control), T1, T2, T3, T4, T5, and T6. The results showed that flour storage time significantly increased dough tenacity (P) and curve configuration ratio (P/L), and decreased the biscuit volume (best at T0). However, 2-3 weeks of storage highlighted a significant increase in deformation energy (W), an essential alveograph parameter that is closely correlated to the technological success of leavened products. This optimum found for W might be considered as a great stride in understanding the effects of storage time, confirming that wheat flour can reach its optimal performance after two-three weeks of storage, in particular for W. Moreover, this information could be useful, not only for biscuits production, but also for bread and bakery products (and, thus, the entire bakery industry). MOLS analysis highlighted that dough rheology and biscuit characteristics are mainly affected by flour composition (primarily from starch content) rather than environmental storage parameters. In conclusion, to optimize the biscuit characteristics, it is necessary to use flours with a low content of damaged starch by selecting the most suitable milling technique and carefully managing the operative parameters.

4.
Pharmacol Ther ; 192: 20-41, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29953902

RESUMEN

The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.


Asunto(s)
Antipsicóticos/farmacología , Clozapina/farmacología , Diseño de Fármacos , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/metabolismo , Esquizofrenia/tratamiento farmacológico , Animales , Antipsicóticos/efectos adversos , Antipsicóticos/farmacocinética , Antipsicóticos/uso terapéutico , Clozapina/efectos adversos , Clozapina/uso terapéutico , Humanos , Terapia Molecular Dirigida , Medicina de Precisión , Psicología Clínica , Receptores Colinérgicos/metabolismo , Receptores de Glutamato/metabolismo , Receptores Histamínicos/metabolismo , Esquizofrenia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...