Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 3(1): 100968, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35059648

RESUMEN

We describe environmental microbial eukaryotes (EMEs) sample collection, single-cell isolation, lysis, and genome amplification, followed by the rDNA amplification and OTU screening for recovery of high-quality species-specific genomes for de novo assembly. These protocols are part of our pipeline that also includes bioinformatic methods. The pipeline and its application on a wide range of phyla of different sample complexity are described in our complementary paper. In addition, this protocol describes optimized lysis, genome amplification, and OTU screening steps of the pipeline. For complete details on the use and execution of this protocol, please refer to Ciobanu et al. (2021).


Asunto(s)
Eucariontes , Genómica , Separación Celular , Genoma , Genómica/métodos
2.
Commun Biol ; 4(1): 962, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385583

RESUMEN

Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species' cells. In this perspective, we discuss opportunities afforded by single-cell technologies for energy and environmental science and grand challenges that must be tackled to apply these approaches to plants, fungi and algae. We highlight the need to develop better and more comprehensive single-cell technologies, analysis and visualization tools, and tissue preparation methods. We advocate for the creation of a centralized, open-access database to house plant single-cell data. Finally, we consider how such efforts should balance the need for deep characterization of select model species while still capturing the diversity in the plant kingdom. Investments into the development of methods, their application to relevant species, and the creation of resources to support data dissemination will enable groundbreaking insights to propel energy and environmental science forward.


Asunto(s)
Conservación de los Recursos Energéticos/métodos , Bases de Datos como Asunto , Ciencia Ambiental/métodos , Plantas , Análisis de la Célula Individual/métodos , Tecnología/instrumentación
3.
iScience ; 24(4): 102290, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33870123

RESUMEN

Single-cell sequencing of environmental microorganisms is an essential component of the microbial ecology toolkit. However, large-scale targeted single-cell sequencing for the whole-genome recovery of uncultivated eukaryotes is lagging. The key challenges are low abundance in environmental communities, large complex genomes, and cell walls that are difficult to break. We describe a pipeline composed of state-of-the art single-cell genomics tools and protocols optimized for poorly studied and uncultivated eukaryotic microorganisms that are found at low abundance. This pipeline consists of seven distinct steps, beginning with sample collection and ending with genome annotation, each equipped with quality review steps to ensure high genome quality at low cost. We tested and evaluated each step on environmental samples and cultures of early-diverging lineages of fungi and Chromista/SAR. We show that genomes produced using this pipeline are almost as good as complete reference genomes for functional and comparative genomics for environmental microbial eukaryotes.

4.
Cell Rep ; 27(7): 2241-2247.e4, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091459

RESUMEN

Single-cell transcriptome profiling of heterogeneous tissues can provide high-resolution windows into developmental dynamics and environmental responses, but its application to plants has been limited. Here, we used the high-throughput Drop-seq approach to profile >12,000 cells from Arabidopsis roots. This identified numerous distinct cell types, covering all major root tissues and developmental stages, and illuminated specific marker genes for these populations. In addition, we demonstrate the utility of this approach to study the impact of environmental conditions on developmental processes. Analysis of roots grown with or without sucrose supplementation uncovers changes in the relative frequencies of cell types in response to sucrose. Finally, we characterize the transcriptome changes that occur across endodermis development and identify nearly 800 genes with dynamic expression as this tissue differentiates. Collectively, we demonstrate that single-cell RNA-seq can be used to profile developmental processes in plants and show how they can be altered by external stimuli.


Asunto(s)
Arabidopsis/metabolismo , Perfilación de la Expresión Génica/métodos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Células Vegetales/metabolismo , Raíces de Plantas/genética , Sacarosa/metabolismo
5.
Nat Microbiol ; 3(12): 1417-1428, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30297742

RESUMEN

Environmental DNA surveys reveal that most fungal diversity represents uncultured species. We sequenced the genomes of eight uncultured species across the fungal tree of life using a new single-cell genomics pipeline. We show that, despite a large variation in genome and gene space recovery from each single amplified genome (SAG), ≥90% can be recovered by combining multiple SAGs. SAGs provide robust placement for early-diverging lineages and infer a diploid ancestor of fungi. Early-diverging fungi share metabolic deficiencies and show unique gene expansions correlated with parasitism and unculturability. Single-cell genomics holds great promise in exploring fungal diversity, life cycles and metabolic potential.


Asunto(s)
Hongos/genética , Hongos/metabolismo , Genoma Fúngico , Genómica , Biodiversidad , ADN Ribosómico/genética , Hongos/clasificación , Hongos/enzimología , Variación Genética , Heterocigoto , Estadios del Ciclo de Vida , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Filogenia , Polimorfismo Genético , ARN Ribosómico 18S/genética , Metabolismo Secundario/genética , Metabolismo Secundario/fisiología , Análisis de Secuencia de ADN , Simbiosis/genética , Simbiosis/fisiología
6.
PLoS Biol ; 15(12): e2004050, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29240790

RESUMEN

From bacteria to humans, individual cells within isogenic populations can show significant variation in stress tolerance, but the nature of this heterogeneity is not clear. To investigate this, we used single-cell RNA sequencing to quantify transcript heterogeneity in single Saccharomyces cerevisiae cells treated with and without salt stress to explore population variation and identify cellular covariates that influence the stress-responsive transcriptome. Leveraging the extensive knowledge of yeast transcriptional regulation, we uncovered significant regulatory variation in individual yeast cells, both before and after stress. We also discovered that a subset of cells appears to decouple expression of ribosomal protein genes from the environmental stress response in a manner partly correlated with the cell cycle but unrelated to the yeast ultradian metabolic cycle. Live-cell imaging of cells expressing pairs of fluorescent regulators, including the transcription factor Msn2 with Dot6, Sfp1, or MAP kinase Hog1, revealed both coordinated and decoupled nucleocytoplasmic shuttling. Together with transcriptomic analysis, our results suggest that cells maintain a cellular filter against decoupled bursts of transcription factor activation but mount a stress response upon coordinated regulation, even in a subset of unstressed cells.


Asunto(s)
Saccharomyces cerevisiae/fisiología , Cloruro de Sodio/farmacología , Estrés Fisiológico , Variación Genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Transcriptoma
7.
Sci Data ; 3: 160081, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27673566

RESUMEN

Generating sequence data of a defined community composed of organisms with complete reference genomes is indispensable for the benchmarking of new genome sequence analysis methods, including assembly and binning tools. Moreover the validation of new sequencing library protocols and platforms to assess critical components such as sequencing errors and biases relies on such datasets. We here report the next generation metagenomic sequence data of a defined mock community (Mock Bacteria ARchaea Community; MBARC-26), composed of 23 bacterial and 3 archaeal strains with finished genomes. These strains span 10 phyla and 14 classes, a range of GC contents, genome sizes, repeat content and encompass a diverse abundance profile. Short read Illumina and long-read PacBio SMRT sequences of this mock community are described. These data represent a valuable resource for the scientific community, enabling extensive benchmarking and comparative evaluation of bioinformatics tools without the need to simulate data. As such, these data can aid in improving our current sequence data analysis toolkit and spur interest in the development of new tools.

8.
Front Microbiol ; 7: 1321, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27667984

RESUMEN

Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella pneumophila, and their corresponding virulence factors were present in all cleanroom samples. This is the first functional metagenomics study describing presence of pathogens and their corresponding virulence factors in cleanroom environments. The results of this study should be considered for microbial monitoring of enclosed environments such as schools, homes, hospitals and more isolated habitation such the International Space Station and future manned missions to Mars.

9.
Microbiome ; 3: 62, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26642878

RESUMEN

BACKGROUND: Recent studies posit a reciprocal dependency between the microbiomes associated with humans and indoor environments. However, none of these metagenome surveys has considered the viability of constituent microorganisms when inferring impact on human health. RESULTS: Reported here are the results of a viability-linked metagenomics assay, which (1) unveil a remarkably complex community profile for bacteria, fungi, and viruses and (2) bolster the detection of underrepresented taxa by eliminating biases resulting from extraneous DNA. This approach enabled, for the first time ever, the elucidation of viral genomes from a cleanroom environment. Upon comparing the viable biomes and distribution of phylotypes within a cleanroom and adjoining (uncontrolled) gowning enclosure, the rigorous cleaning and stringent control countermeasures of the former were observed to select for a greater presence of anaerobes and spore-forming microflora. Sequence abundance and correlation analyses suggest that the viable indoor microbiome is influenced by both the human microbiome and the surrounding ecosystem(s). CONCLUSIONS: The findings of this investigation constitute the literature's first ever account of the indoor metagenome derived from DNA originating solely from the potential viable microbial population. Results presented in this study should prove valuable to the conceptualization and experimental design of future studies on indoor microbiomes aimed at inferring impact on human health.


Asunto(s)
Ambiente Controlado , Microbiología Ambiental , Metagenoma , Metagenómica , Viabilidad Microbiana/genética , Eucariontes/clasificación , Eucariontes/genética , Humanos , Metagenómica/métodos , Microbiota , Células Procariotas/clasificación , ARN Ribosómico 16S/genética , Virus/clasificación , Virus/genética
10.
BMC Genomics ; 16: 856, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26496746

RESUMEN

BACKGROUND: The rapid development of sequencing technologies has provided access to environments that were either once thought inhospitable to life altogether or that contain too few cells to be analyzed using genomics approaches. While 16S rRNA gene microbial community sequencing has revolutionized our understanding of community composition and diversity over time and space, it only provides a crude estimate of microbial functional and metabolic potential. Alternatively, shotgun metagenomics allows comprehensive sampling of all genetic material in an environment, without any underlying primer biases. Until recently, one of the major bottlenecks of shotgun metagenomics has been the requirement for large initial DNA template quantities during library preparation. RESULTS: Here, we investigate the effects of varying template concentrations across three low biomass library preparation protocols on their ability to accurately reconstruct a mock microbial community of known composition. We analyze the effects of input DNA quantity and library preparation method on library insert size, GC content, community composition, assembly quality and metagenomic binning. We found that library preparation method and the amount of starting material had significant impacts on the mock community metagenomes. In particular, GC content shifted towards more GC rich sequences at the lower input quantities regardless of library prep method, the number of low quality reads that could not be mapped to the reference genomes increased with decreasing input quantities, and the different library preparation methods had an impact on overall metagenomic community composition. CONCLUSIONS: This benchmark study provides recommendations for library creation of representative and minimally biased metagenome shotgun sequencing, enabling insights into functional attributes of low biomass ecosystem microbial communities.


Asunto(s)
Metagenoma , Metagenómica , Microbiota , Archaea/genética , Bacterias/genética , Composición de Base , Biomasa , Mapeo Contig , Biblioteca de Genes , Metagenómica/métodos , Análisis de Secuencia de ADN
11.
ScientificWorldJournal ; 2015: 296762, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26167524

RESUMEN

Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

12.
Biomed Microdevices ; 9(5): 729-36, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17492382

RESUMEN

Continuous-flow analysis, where samples circulate encapsulated in a carrier fluid is an attractive alternative to batch processing for high-throughput devices that use the polymerase chain reaction (PCR). Challenges of continuous-flow prototypes include the hydrodynamic and biological incompatibility of the carrier fluid, microchannel fouling, sample carryover and the integration of a nucleic acid extraction and reverse transcription step. We tested two homemade, continuous-flow thermocycler microdevices for amplification of reverse-transcribed messages from cell lysates without nucleic acid extraction. Amplification yield and specificity were assessed with state-of-the-art, real-time quantitative equipment. Carryover contamination between consecutive samples was absent. Amplification specificity and interference by genomic DNA were optimized by primer design. Robust detection of the low-copy transcript CLIC5 from 18 cells per microliter is demonstrated in cultured lymphoblasts. The results prove the concept that the development of micro-total analysis systems (micro-TAS) for continuous gene expression directly from cell suspensions is viable with current technology.


Asunto(s)
ADN/análisis , Técnicas Analíticas Microfluídicas/instrumentación , Reacción en Cadena de la Polimerasa/instrumentación , Línea Celular Tumoral , Canales de Cloruro/genética , ADN/genética , Diseño de Equipo , Expresión Génica , Humanos , Proteínas de Microfilamentos/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Plásmidos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Temperatura , Transcripción Genética
13.
J Am Chem Soc ; 128(9): 2822-35, 2006 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-16506760

RESUMEN

Posttranslational modification of proteins with farnesyl and geranylgeranyl isoprenoids is a widespread phenomenon in eukaryotic organisms. Isoprenylation is conferred by three protein prenyltransferases: farnesyl transferase (FTase), geranylgeranyl transferase type-I (GGTase-I), and Rab geranylgeranyltransferase (RabGGTase). Inhibitors of these enzymes have emerged as promising therapeutic compounds for treatment of cancer, viral and parasite originated diseases, as well as osteoporosis. However, no generic nonradioactive protein prenyltransferase assay has been reported to date, complicating identification of enzyme-specific inhibitors. We have addressed this issue by developing two fluorescent analogues of farnesyl and geranylgeranyl pyrophosphates {3,7-dimethyl-8-(7-nitro-benzo[1,2,5]oxadiazol-4-ylamino)-octa-2,6-diene-1}pyrophosphate (NBD-GPP) and {3,7,11-trimethyl-12-(7-nitro-benzo[1,2,5]oxadiazo-4-ylamino)-dodeca-2,6,10-trien-1} pyrophosphate (NBD-FPP), respectively. We demonstrate that these compounds can serve as efficient lipid donors for prenyltransferases. Using these fluorescent lipids, we have developed two simple (SDS-PAGE and bead-based) in vitro prenylation assays applicable to all prenyltransferases. Using the SDS-PAGE assay, we found that, in contrast to previous reports, the tyrosine phosphatase PRL-3 may possibly be a dual substrate for both FTase and GGTase-I. The on-bead prenylation assay was used to identify prenyltransferase inhibitors that displayed nanomolar affinity for RabGGTase and FTase. Detailed analysis of the two inhibitors revealed a complex inhibition mechanism in which their association with the peptide binding site of the enzyme reduces the enzyme's affinity for lipid and peptide substrates without competing directly with their binding. Finally, we demonstrate that the developed fluorescent isoprenoids can directly and efficiently penetrate into mammalian cells and be incorporated in vivo into small GTPases.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Dimetilaliltranstransferasa/antagonistas & inhibidores , Colorantes Fluorescentes/química , Fosfatos de Poliisoprenilo/química , 4-Cloro-7-nitrobenzofurazano/química , Transferasas Alquil y Aril/metabolismo , Animales , Células COS , Chlorocebus aethiops , Humanos , Fosfatos de Poliisoprenilo/farmacología , Sesquiterpenos , Especificidad por Sustrato , Células Tumorales Cultivadas
14.
Genome ; 49(10): 1297-307, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17213912

RESUMEN

Satellite DNA repeats were studied in Caucasian populations of 18 rock lizard species of the genus Darevskia. Four subfamilies (Caucasian Lacerta satellites (CLsat)I-IV) were identified, which shared 70%-75% sequence similarity. The distribution of CLsat subfamilies among the species was studied. All the species could be divided into at least 3 clades, depending on the content of CLsat subfamilies in each genome: "saxicola", "rudis", and "mixta" lizards. CLsatI was found in all studied species, but in very different quantities; the "saxicola" group contained this subfamily predominantly. The "rudis" group also contained CLsatIII, and the "mixta" group carried considerable amounts of CLsatII. The highest concentrations of CLsatI and CLsatII were detected in 2 ground lizards--D. derjugini and D. praticola, respectively. D. parvula predominantly carried CLsatIII. CLsatIV was found only in the Crimean species D. lindholmi. The distribution patterns of satellite subfamilies show possible postglacial speciation within the genus Darevskia. A hybrid origin of species that possess 2 or 3 CLsat subfamilies and important clarifications to the systematics of the genus are proposed.


Asunto(s)
ADN Satélite/genética , Evolución Molecular , Lagartos/clasificación , Lagartos/genética , Animales , Azerbaiyán , Secuencia de Bases , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , Federación de Rusia
15.
J Exp Zool B Mol Dev Evol ; 302(6): 505-16, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15390352

RESUMEN

A new tandemly repeated (satellite) DNA family namely Agi160, from Lacerta agilis and Lacerta strigata (Lacerta sensu stricto (s. str.), Linnaeus 1758) have been cloned and sequenced. Agi160 is found in the above two species, as well as two other representatives of the same genus, L. viridis and L. media. DNA hybridization did not reveal it in Darevskia, Podarcis, Zootoca, Eremias, Ophisops, and Gallotia - the other genera of the family Lacertidae. The results suggest that Agi160 is a Lacerta s. str. specific family of tandem DNA repeats. However, a comparison between sequences of Agi160 and CLsat repeat units revealed 60 bp regions 62-74% identical. The latter is a satellite DNA family typical for Darevskia (syn. "L. saxicola complex") (Grechko et al., Molecular-genetic classification and phylogenetic relatedness of some species of Lacertidae lizards by taxonoprint data. Mol Biol 32:172-183, 1988.). Both Agi160 and CLsat tandem repeats share several common features (e.g., the same AT content and distribution of multiple short A-T runs, internal structure of repeated units, the presence of conservative regions). These data are indicative of their common origin and a possibly strong selective pressure upon conserving both satellites. A comparative analysis of structure, organization, and abundance of these two families of satDNA reveals evolutionary pathways that led to their formation and divergence. The data are consistent with the hypotheses of the concerted evolution of satellite DNA families. The possibility of use of Agi160 as a phylogenetic tool, defining relationships within Lacerta s. str., as well as within the whole family of Lacertidae is discussed.


Asunto(s)
ADN Satélite/genética , Evolución Molecular , Lagartos/genética , Filogenia , Animales , Composición de Base , Secuencia de Bases , Southern Blotting , Clonación Molecular , Análisis por Conglomerados , Cartilla de ADN , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...