Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791590

RESUMEN

This paper describes the process of producing chemiresistors based on hybrid nanostructures obtained from graphene and conducting polymers. The technology of graphene presumed the following: dispersion and support stabilization based on the chemical vapor deposition technique; transfer of the graphene to the substrate by spin-coating of polymethyl methacrylate; and thermal treatment and electrochemical delamination. For the process at T = 950 °C, a better settlement of the grains was noticed, with the formation of layers predominantly characterized by peaks and not by depressions. The technology for obtaining hybrid nanostructures from graphene and conducting polymers was drop-casting, with solutions of Poly(3-hexylthiophene (P3HT) and Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2). In the case of F8T2, compared to P3HT, a 10 times larger dimension of grain size and about 7 times larger distances between the peak clusters were noticed. To generate chemiresistors from graphene-polymer structures, an ink-jet printer was used, and the metallization was made with commercial copper ink for printed electronics, leading to a structure of a resistor with an active surface of about 1 cm2. Experimental calibration curves were plotted for both sensing structures, for a domain of CH4 of up to 1000 ppm concentration in air. A linearity of the curve for the low concentration of CH4 was noticed for the graphene structure with F8T2, presenting a sensitivity of about 6 times higher compared with the graphene structure with P3HT, which makes the sensing structure of graphene with F8T2 more feasible and reliable for the medical application of irritable bowel syndrome evaluation.


Asunto(s)
Grafito , Síndrome del Colon Irritable , Metano , Nanoestructuras , Polímeros , Grafito/química , Nanoestructuras/química , Polímeros/química , Metano/química , Síndrome del Colon Irritable/metabolismo , Humanos , Pruebas Respiratorias/métodos , Tiofenos/química , Conductividad Eléctrica
2.
Polymers (Basel) ; 15(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37835906

RESUMEN

The European Green Deal's goals are anticipated to be fulfilled in large part thanks to the New Circular Economy Action Plan. It is believed that recycling materials will have a significant positive impact on the environment, particularly in terms of reducing greenhouse gas emissions and the impacts this will have on preventing climate change. Due to the complexity of the issue and its significant practical ramifications, the activity of Waste Electrical and Electronic Equipment (WEEE) collection networks is a subject of interest for researchers and managers, in accordance with the principles that recent laws have addressed in a large number of industrialized countries. The goal of this paper is to characterize and obtain composite materials using an injection process with a matrix of LDPE, PP, and HDPE, with up to a 10% addition of nonmetallic powders from PCBs and electronic parts from an integrated process of WEEE recycling. The composites present relevant thermal, electrical, and mechanical properties. Such composite materials, due to their relevant dielectric properties, may be further tested for applications in electromagnetic shielding at frequencies above 1 kHz, or for electromagnetic interference/electromagnetic compatibility (EMI/EMC and ESD) applications at lower frequencies due to their superior dielectric loss factor values, associated with relevant behaviors around exploitation temperatures, mainly for the electric, electronic, or automotive industries.

3.
Polymers (Basel) ; 15(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37571055

RESUMEN

The European methodology for plastics, as a feature of the EU's circular economy activity plan, ought to support the decrease in plastic waste. The improvement of recycled plastics' economics and quality is one important part of this action plan. Additionally, achieving the requirement that all plastic packaging sold in the EU by 2030 be recyclable or reusable is an important objective. This means that food packaging materials should be recycled in a closed loop at the end. One of the most significant engineering polymers is polyethylene terephthalate (PET), which is widely used. Due to its numerous crucial qualities, it has a wide variety of applications, from packaging to fibers. The thermoplastic polyolefin, primarily polyethylene and polypropylene (PP), is a popular choice utilized globally in a wide range of applications. In the first phase of the current experiment, the materials were obtained by hot pressing with the press machine. The reinforcer is made of Al nanopowder 800 nm and Fe nanopowder 790 nm and the quality of the recycled polymer was examined using Fourier transform infrared spectroscopy (FTIR), a scanning electron microscope (SEM), and differential scanning calorimetry (DSC). From DSC variation curves as a function of temperature, the values from the transformation processes (glass transition, crystallization, and melting) are obtained. SEM measurements revealed that the polymer composites with Al have smooth spherical particles while the ones with Fe have bigger rough spherical particles.

4.
Polymers (Basel) ; 15(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299248

RESUMEN

In this paper, the obtaining and characterization of five experimental models of novel polymer composite materials with ferrite nano-powder are presented. The composites were obtained by mechanically mixing two components and pressing the obtained mixture on a hot plate press. The ferrite powders were obtained by an innovative economic co-precipitation route. The characterization of these composites consisted of physical and thermal properties: hydrostatic density, scanning electron microscopy (SEM), and TG DSC thermal analyses, along with functional electromagnetic tests in order to demonstrate the functionality of these materials as electromagnetic shields (magnetic permeability, dielectric characteristics, and shielding effectiveness). The purpose of this work was to obtain a flexible composite material, applicable to any type of architecture for the electrical and automotive industry, necessary for protection against electromagnetic interference. The results demonstrated the efficiency of such materials at lower frequencies, but also in the microwave domain, with higher thermal stability and lifetime.

5.
Polymers (Basel) ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299346

RESUMEN

The purpose of this work was to obtain an elastic composite material from polymer powders (polyurethane and polypropylene) with the addition of BaTiO3 until 35% with tailored dielectric and piezoelectric features. The filament extruded from the composite material was very elastic but had good features to be used for 3D printing applications. It was technically demonstrated that the 3D thermal deposition of composite filament with 35% BaTiO3 was a convenient process for achieving tailored architectures to be used as devices with functionality as piezoelectric sensors. Finally, the functionality of such 3D printable flexible piezoelectric devices with energy harvesting features was demonstrated, which can be used in various biomedical devices (as wearable electronics or intelligent prosthesis), generating enough energy to make such devices completely autonomous only by exploiting body movements at variable low frequencies.

6.
Polymers (Basel) ; 15(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37050250

RESUMEN

Dielectric properties for nanocomposites with metallic fillers inside a polymer matrix were determined using CST STUDIO SUITE-Electromagnetic field simulation software followed by the free-space Nicolson-Ross-Weir procedure. The structure is randomly generated to simulate the intrinsic non-uniformity of real nanomaterials. Cubic insertions were equated to corresponding spherical particles in order to provide either the same volume index or the same exterior surface index. The energy concentration around the inserts and within the entire material was determined as useful information in practice in order to design materials tailored to avoid exceeding the field/temperature limit values. The paper successfully associated the dialectic measurements with the results from the computer simulations, which are mainly based on energetic effects in electromagnetic applications. The experimental results are comparable with the software simulation in terms of precision. The conclusions outline the practical applications of the method for both electromagnetic shielding and microwave domain/telecommunications applications.

7.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35455412

RESUMEN

New aspects concerning the photodegradation (PD) of ampicillin are reported by photoluminescence (PL), Raman scattering and FTIR spectroscopy. The exposure of ampicillin in the absence (AM) and in the presence of the excipient (AMP) to UV light leads to an intensity diminution of the photoluminescence excitation (PLE) and photoluminescence (PL) spectra and the emergence of a new IR band at 3450 cm-1. The photoluminescence studies demonstrate that the AM PD is amplified in the presence of excipients and an alkaline medium. In this last case, the PD process of AM involves the emergence of new compounds, whose presence is highlighted by: (i) the emergence of the isosbestic point at 300 nm in the UV-VIS spectra; (ii) a change in the ratio between the absorbance of IR bands situated in the spectral ranges 1200-1660 and 3250-3450 cm-1; and (iii) a change in the ratio between the intensities of the Raman lines localized in the spectral ranges 1050-1800 and 2750-3100 cm-1. A chemical mechanism of the PD processes of AM in an alkaline medium is proposed.

8.
Polymers (Basel) ; 13(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960991

RESUMEN

In this work, improved fracture toughness of tetra-functional epoxy polymer was obtained using two-dimensional (2H polytype) molybdenum disulfide (MoS2) nano-platelets as a filler. Simultaneous in-situ exfoliation and functionalization of MoS2 were achieved in the presence of cetyltrimethylammonium bromide (CTAB) via sonication. The aim was to improve the dispersion of MoS2 nanoplatelets in epoxy and enhance the interfacial interaction between nanoplatelets and epoxy matrix. Epoxy nanocomposites with CTAB functionalized MoS2 (f-MoS2) nanoplatelets, ranging in content from 0.1 wt% up to 1 wt%, were fabricated. Modified MoS2 improved the fracture properties (81%) of tetrafunctional epoxy nanocomposites. The flexural strength and compressive strength improved by 64% and 47%, respectively, with 0.25 wt% loading of f-MoS2 nanoplatelets compared to neat epoxy. The addition of f-MoS2 nanoplatelets enhanced the thermomechanical properties of epoxy. This work demonstrated the potential of organically modified MoS2 nanoplatelets for improving the fracture and thermal behavior of tetrafunctional epoxy nanocomposites.

9.
Polymers (Basel) ; 13(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34451312

RESUMEN

This paper prepared composites under the free membranes form that are based on thermoplastic polymers of the type of polyurethane (TPU) and polyolefin (TPO), which are blended in the weight ratio of 2:1, and ceramic nanoparticles (CNs) such as BaSrTiO3 and SrTiO3. The structural, optical, and conductive properties of these new composite materials are reported. The X-ray diffraction studies highlight a cubic crystalline structure of these CNs. The main variations in the vibrational properties of the TPU:TPO blend induced by CNs consist of the following: (i) the increase in the intensity of the Raman line of 1616 cm-1; (ii) the down-shift of the IR band from 800 to 791 cm-1; (iii) the change of the ratio between the absorbance of IR bands localized in the spectral range 950-1200 cm-1; and (iv) the decrease in the absorbance of the IR band from 1221 cm-1. All these variations were correlated with a preferential adsorption of thermoplastic polymers on the CNs surface. A photoluminescence (PL) quenching process of thermoplastic polymers is demonstrated to occur in the presence of CNs. The anisotropic PL measurements have highlighted a change in the angle of the binding of the TPU:TPO blend, which varies from 23.7° to ≈49.3° and ≈53.4°, when the concentration of BaSrTiO3 and SrTiO3 CNs, respectively, is changed from 0 to 25 wt. %. Using dielectric spectroscopy, two mechanisms are invoked to take place in the case of the composites based on TPU:TPO blends and CNs, i.e., one regarding the type of the electrical conduction and another specifying the dielectric-dipolar relaxation processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...