Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7068, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127690

RESUMEN

Fiber optic infrastructure is essential in the transmission of data of all kinds, both for the long haul and shorter distances in cities. Optical fibers are also preferred for data infrastructures inside buildings, especially in highly secured organizations and government facilities. This paper focuses on a reference measurement and analysis of optical fiber cables sensitivity to acoustic waves. Measurement was carried out in an anechoic chamber to ensure stable conditions of acoustic pressure in the range from 20 Hz to 20 kHz. The frequency response, the signal-to-noise ratio per frequency, and the Speech Transmission Index are evaluated for various types of optical fiber cables and different ceiling tiles, followed by their comparison. The influence of the means of fixing the cable is also studied. The results prove that optical fiber-based infrastructure in buildings can be exploited as a sensitive microphone.

2.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36236411

RESUMEN

In nuclear power plants, particle accelerators, and other nuclear facilities, measuring the level of ionising gamma radiation is critical for the safety and management of the operation and the environment's protection. However, in many cases, it is impossible to monitor ionising radiation directly at the required location continuously. This is typically either due to the lack of space to accommodate the entire dosimeter or in environments with high ionising radiation activity, electromagnetic radiation, and temperature, which significantly shorten electronics' lifetime. To allow for radiation measurement in such scenarios, we designed a fibre optic dosimeter that introduces an optical fibre link to deliver the scintillation radiation between the ionising radiation sensor and the detectors. The sensors can thus be placed in space-constrained and electronically hostile locations. We used silica optical fibres that withstand high radiation doses, high temperatures, and electromagnetic interference. We use a single photon counter and a photomultiplier to detect the transmitted scintillation radiation. We have shown that selected optical fibres, combined with different scintillation materials, are suitable for measuring gamma radiation levels in hundreds of kBq. We present the architecture of the dosimeter and its experimental characterisation with several combinations of optical fibres, detectors, and scintillation crystals.


Asunto(s)
Fibras Ópticas , Dosímetros de Radiación , Fenómenos Físicos , Radiometría , Conteo por Cintilación , Dióxido de Silicio
3.
Opt Express ; 30(4): 5450-5464, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209507

RESUMEN

Challenging experiments for tests in fundamental physics require highly coherent optical frequency references with suppressed phase noise from hundreds of kHz down to µHz of Fourier frequencies. It can be achieved by remote synchronization of many frequency references interconnected by stabilized optical fibre links. Here we describe the path to realize a delocalized optical frequency reference for spectroscopy of the isomeric state of the nucleus of Thorium-229 atom. This is a prerequisite for the realization of the next generation of an optical clock - the nuclear clock. We present the established 235 km long phase-coherent stabilized cross-border fibre link connecting two delocalized metrology laboratories in Brno and Vienna operating highly-coherent lasers disciplined by active Hydrogen masers through optical frequency combs. A significant part (up to tens of km) of the optical fibre is passing urban combined collectors with a non-negligible level of acoustic interference and temperature changes, which results in a power spectral density of phase noise over 105 rad2· Hz-1. Therefore, we deploy a digital signal processing technique to suppress the fibre phase noise over a wide dynamic range of phase fluctuations. To demonstrate the functionality of the link, we measured the phase noise power spectral density of a remote beat note between two independent lasers, locked to high-finesse stable resonators. Using optical frequency combs at both ends of the link, a long-term fractional frequency stability in the order of 10-15 between local active Hydrogen masers was measured as well. Thanks to this technique, we have achieved reliable operation of the phase-coherent fibre link with fractional stability of 7 × 10-18 in 103 s.

4.
Opt Lett ; 47(21): 5704-5707, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219308

RESUMEN

The wide span and high density of lines in its rovibrational spectrum render hydrogen cyanide a useful spectroscopic media for referencing absolute frequencies of lasers in optical communication and dimensional metrology. We determined, for the first time to the best of our knowledge, the molecular transitions' center frequencies of the H13C14N isotope in the range from 1526 nm to 1566 nm with 1.3 × 10-10 fractional uncertainty. We investigated the molecular transitions with a highly coherent and widely tunable scanning laser that was precisely referenced to a hydrogen maser through an optical frequency comb. We demonstrated an approach to stabilize the operational conditions needed to maintain the constantly low pressure of the hydrogen cyanide to carry out the saturated spectroscopy with the third-harmonic synchronous demodulation. We demonstrated approximately a forty-fold improvement in the line centers' resolution compared to the previous result.

5.
Opt Express ; 28(9): 13091-13103, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403790

RESUMEN

We demonstrate an optical frequency analysis method using the Fourier transform of detection times of fluorescence photons emitted from a single trapped 40Ca+ ion. The response of the detected photon rate to the relative laser frequency deviations is recorded within the slope of a dark resonance formed in the lambda-type energy level scheme corresponding to two optical dipole transitions. This approach enhances the sensitivity to the small frequency deviations and does so with reciprocal dependence on the fluorescence rate. The employed lasers are phase locked to an optical frequency comb, which allows for precise calibration of optical frequency analysis by deterministic modulation of the analyzed laser beam with respect to the reference beam. The attainable high signal-to-noise ratios of up to a MHz range of modulation deviations and up to a hundred kHz modulation frequencies promise the applicability of the presented results in a broad range of optical spectroscopic applications.

6.
Opt Express ; 27(7): 9361-9371, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045088

RESUMEN

In this contribution, we investigate the properties of antireflective coatings on iodine-filled absorption cell windows. These coatings are subject to high temperatures during the cell production process and are in direct contact with the absorption medium, which influences their optical performance. We tested the thermal resistance of TiO2- and Ta2O5- based coatings produced using conventional electron beam evaporation (e-beam) and ion-assisted deposition (PIAD). We prepared a set of iodine-filled absorption cells that were used to test the coatings' resistance to iodine vapors. We show that the choice of coating materials, coating methods, and a well-chosen bakeout procedure can mitigate any unwanted effects, such as temperature-induced spectral shifts and optical losses inhomogeneities or settling of the absorption medium in the coating.

7.
Sensors (Basel) ; 17(1)2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28067834

RESUMEN

This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

8.
Sensors (Basel) ; 16(9)2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27608024

RESUMEN

The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30-300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10 - 9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm.

9.
Sensors (Basel) ; 15(1): 1342-53, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25587980

RESUMEN

We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.

10.
Appl Opt ; 53(31): 7435-41, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25402909

RESUMEN

We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

11.
Sensors (Basel) ; 14(1): 1757-70, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24448169

RESUMEN

A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10(-11).

12.
Sensors (Basel) ; 13(10): 13090-8, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24084107

RESUMEN

This paper presents a method implemented in a system for automatic contactless calibration of gauge blocks designed at ISI ASCR. The system combines low-coherence interferometry and laser interferometry, where the first identifies the gauge block sides position and the second one measures the gauge block length itself. A crucial part of the system is the algorithm for gauge block alignment to the measuring beam which is able to compensate the gauge block lateral and longitudinal tilt up to 0.141 mrad. The algorithm is also important for the gauge block position monitoring during its length measurement.


Asunto(s)
Algoritmos , Interferometría/instrumentación , Interferometría/métodos , Rayos Láser , Calibración/normas , Precisión de la Medición Dimensional , Diseño de Equipo , Análisis de Falla de Equipo , Interferometría/normas , Internacionalidad , Pesos y Medidas
13.
Sensors (Basel) ; 13(2): 2206-19, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23435049

RESUMEN

In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

14.
Opt Express ; 20(25): 27830-7, 2012 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23262728

RESUMEN

We present a concept of suppression of the influence of variations of the refractive index of air in displacement measuring interferometry. The principle is based on referencing of wavelength of the coherent laser source in atmospheric conditions instead of traditional stabilization of the optical frequency and indirect evaluation of the refractive index of air. The key advantage is in identical beam paths of the position measuring interferometers and the interferometer used for the wavelength stabilization. Design of the optical arrangement presented here to verify the concept is suitable for real interferometric position sensing in technical practice especially where a high resolution measurement within some limited range in atmospheric conditions is needed, e.g. in nanometrology.


Asunto(s)
Aire , Interferometría/métodos , Modelos Teóricos , Nanotecnología/métodos , Refractometría/métodos , Atmósfera , Diseño de Equipo , Interferometría/instrumentación , Interferometría/normas , Rayos Láser , Nanotecnología/instrumentación , Nanotecnología/normas , Refractometría/instrumentación , Refractometría/normas
15.
Sensors (Basel) ; 12(10): 14084-94, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23202037

RESUMEN

We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.


Asunto(s)
Aire/análisis , Refractometría/instrumentación , Atmósfera/análisis , Ambiente Controlado , Monitoreo del Ambiente/instrumentación , Interferometría/instrumentación , Interferometría/métodos , Refractometría/métodos
16.
Sensors (Basel) ; 12(10): 14095-112, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23202038

RESUMEN

We have proposed an approach to the interference phase extraction in the homodyne laser interferometry. The method employs a series of computational steps to reconstruct the signals for quadrature detection from an interference signal from a non-polarising interferometer sampled by a simple photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. It is analytically derived and its validity and performance is experimentally verified. The method has proven to be a feasible alternative for the traditional homodyne detection since it performs with comparable accuracy, especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden (e.g., in multi-axis sensor or laser diode based systems).

17.
Sensors (Basel) ; 12(3): 3350-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737012

RESUMEN

In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948.

18.
Sensors (Basel) ; 11(8): 7644-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164036

RESUMEN

The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10(-8) has been achieved.


Asunto(s)
Interferometría/métodos , Nanotecnología/métodos , Física/métodos , Aire , Algoritmos , Calibración , Microscopía/instrumentación , Microscopía/métodos , Nanoestructuras , Fibras Ópticas , Refractometría , Reproducibilidad de los Resultados , Temperatura
19.
Artículo en Inglés | MEDLINE | ID: mdl-20211782

RESUMEN

In this contribution we propose a scheme for a generation of precise displacements through conversion of relative stability of components of a femtosecond laser into the length of a Fabry-Perot cavity. The spacing of mirrors of a Fabry-Perot interferometer represents a mechanical length standard referenced to stable optical frequency of a femtosecond mode-locked laser. With the help of a highly selective optical filter, it is possible to get only a few discrete spectral components. By tuning and locking the Fabry-Perot cavity to a selected single component it is possible to get a mechanical length standard with the uncertainty of the repetition frequency of the femtosecond laser. To verify the method, an auxiliary single-frequency laser is locked to the resonance mode of the cavity and simultaneously it is optically mixed with an independent optical frequency standard He-Ne-I2. The stability of the beat-frequency between these 2 lasers represents the stability of the Fabry-Perot cavity length. The stability recording evaluated through Allan variances for one hour of operation is presented. The pilot experimental setup is able to generate the length standard in the order of 0.01 nm for 20 min of integration time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...