Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Biochem Sci ; 48(7): 629-641, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37169615

RESUMEN

The mitochondrial ribosome (mitoribosome) is a multicomponent machine that has unique structural features. Biogenesis of the human mitoribosome includes correct maturation and folding of the mitochondria-encoded RNA components (12S and 16S mt-rRNAs, and mt-tRNAVal) and their assembly together with 82 nucleus-encoded mitoribosomal proteins. This complex process requires the coordinated action of multiple assembly factors. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided detailed insights into the specific functions of several mitoribosome assembly factors and have defined their timing. In this review we summarize mitoribosomal small (mtSSU) and large subunit (mtLSU) biogenesis based on structural findings, and we discuss potential crosstalk between mtSSU and mtLSU assembly pathways as well as coordination between mitoribosome biogenesis and other processes involved in mitochondrial gene expression.


Asunto(s)
Proteínas Mitocondriales , Ribosomas Mitocondriales , Humanos , Microscopía por Crioelectrón , Ribosomas Mitocondriales/metabolismo , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo
2.
Nucleic Acids Res ; 51(2): 891-907, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629253

RESUMEN

The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.


Asunto(s)
Mitocondrias , Iniciación de la Cadena Peptídica Traduccional , Animales , Humanos , Bacterias/genética , Mamíferos/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Iniciación de Péptidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Nature ; 606(7914): 603-608, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676484

RESUMEN

Mitoribosomes are essential for the synthesis and maintenance of bioenergetic proteins. Here we use cryo-electron microscopy to determine a series of the small mitoribosomal subunit (SSU) intermediates in complex with auxiliary factors, revealing a sequential assembly mechanism. The methyltransferase TFB1M binds to partially unfolded rRNA h45 that is promoted by RBFA, while the mRNA channel is blocked. This enables binding of METTL15 that promotes further rRNA maturation and a large conformational change of RBFA. The new conformation allows initiation factor mtIF3 to already occupy the subunit interface during the assembly. Finally, the mitochondria-specific ribosomal protein mS37 (ref. 1) outcompetes RBFA to complete the assembly with the SSU-mS37-mtIF3 complex2 that proceeds towards mtIF2 binding and translation initiation. Our results explain how the action of step-specific factors modulate the dynamic assembly of the SSU, and adaptation of a unique protein, mS37, links the assembly to initiation to establish the catalytic human mitoribosome.


Asunto(s)
Ribosomas Mitocondriales , Subunidades Ribosómicas Pequeñas , Humanos , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas/química , Subunidades Ribosómicas Pequeñas/metabolismo , Subunidades Ribosómicas Pequeñas/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
4.
Nat Commun ; 12(1): 3673, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135318

RESUMEN

Mitochondrial ribosomes (mitoribosomes) synthesize a critical set of proteins essential for oxidative phosphorylation. Therefore, mitoribosomal function is vital to the cellular energy supply. Mitoribosome biogenesis follows distinct molecular pathways that remain poorly understood. Here, we determine the cryo-EM structures of mitoribosomes isolated from human cell lines with either depleted or overexpressed mitoribosome assembly factor GTPBP5, allowing us to capture consecutive steps during mitoribosomal large subunit (mt-LSU) biogenesis. Our structures provide essential insights into the last steps of 16S rRNA folding, methylation and peptidyl transferase centre (PTC) completion, which require the coordinated action of nine assembly factors. We show that mammalian-specific MTERF4 contributes to the folding of 16S rRNA, allowing 16 S rRNA methylation by MRM2, while GTPBP5 and NSUN4 promote fine-tuning rRNA rearrangements leading to PTC formation. Moreover, our data reveal an unexpected involvement of the elongation factor mtEF-Tu in mt-LSU assembly, where mtEF-Tu interacts with GTPBP5, similar to its interaction with tRNA during translational elongation.


Asunto(s)
Ribosomas Mitocondriales/química , Subunidades Ribosómicas Grandes/química , Línea Celular , Microscopía por Crioelectrón , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Unión Proteica , Pliegue del ARN , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 49(5): 2509-2521, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33555349

RESUMEN

The paucity of recurrent mutations has hampered efforts to understand and treat neuroblastoma. Alternative splicing and splicing-dependent RNA-fusions represent mechanisms able to increase the gene product repertoire but their role in neuroblastoma remains largely unexplored. Here we investigate the presence and possible roles of aberrant splicing and splicing-dependent RNA-fusion transcripts in neuroblastoma. In addition, we attend to establish whether the spliceosome can be targeted to treat neuroblastoma. Through analysis of RNA-sequenced neuroblastoma we show that elevated expression of splicing factors is a strong predictor of poor clinical outcome. Furthermore, we identified >900 primarily intrachromosomal fusions containing canonical splicing sites. Fusions included transcripts from well-known oncogenes, were enriched for proximal genes and in chromosomal regions commonly gained or lost in neuroblastoma. As a proof-of-principle that these fusions can generate altered gene products, we characterized a ZNF451-BAG2 fusion, producing a truncated BAG2-protein which inhibited retinoic acid induced differentiation. Spliceosome inhibition impeded neuroblastoma fusion expression, induced apoptosis and inhibited xenograft tumor growth. Our findings elucidate a splicing-dependent mechanism generating altered gene products in neuroblastoma and show that the spliceosome is a potential target for clinical intervention.


Asunto(s)
Chaperonas Moleculares/genética , Proteínas Mutantes Quiméricas/genética , Neuroblastoma/genética , Empalme del ARN , Empalmosomas/efectos de los fármacos , Aminoaciltransferasas/metabolismo , Animales , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Femenino , Fusión Génica , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Ratones Desnudos , Chaperonas Moleculares/metabolismo , Proteínas Mutantes Quiméricas/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Eliminación de Secuencia , Factores de Transcripción/metabolismo , Proteínas tau/metabolismo
6.
Methods Mol Biol ; 2192: 183-196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230774

RESUMEN

Ribosome profiling (Ribo-Seq) is a technique that allows genome-wide, quantitative analysis of translation. In recent years, it has found multiple applications in studies of translation in diverse organisms, tracking protein synthesis with single codon resolution. Traditional protocols applied for generating Ribo-Seq libraries from mammalian cell cultures are not suitable to study mitochondrial translation due to differences between eukaryotic cytosolic and mitochondrial ribosomes. Here, we present an adapted protocol enriching for mitoribosome footprints. In addition, we describe the preparation of small RNA sequencing libraries from the resultant mitochondrial ribosomal protected fragments (mtRPFs).


Asunto(s)
Perfilación de la Expresión Génica/métodos , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas/genética , Transcriptoma , Secuencia de Bases , Técnicas de Cultivo de Célula , Codón/metabolismo , Células HEK293 , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
7.
Nucleic Acids Res ; 49(1): 354-370, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33283228

RESUMEN

Human mitoribosomes are macromolecular complexes essential for translation of 11 mitochondrial mRNAs. The large and the small mitoribosomal subunits undergo a multistep maturation process that requires the involvement of several factors. Among these factors, GTP-binding proteins (GTPBPs) play an important role as GTP hydrolysis can provide energy throughout the assembly stages. In bacteria, many GTPBPs are needed for the maturation of ribosome subunits and, of particular interest for this study, ObgE has been shown to assist in the 50S subunit assembly. Here, we characterize the role of a related human Obg-family member, GTPBP5. We show that GTPBP5 interacts specifically with the large mitoribosomal subunit (mt-LSU) proteins and several late-stage mitoribosome assembly factors, including MTERF4:NSUN4 complex, MRM2 methyltransferase, MALSU1 and MTG1. Interestingly, we find that interaction of GTPBP5 with the mt-LSU is compromised in the presence of a non-hydrolysable analogue of GTP, implying a different mechanism of action of this protein in contrast to that of other Obg-family GTPBPs. GTPBP5 ablation leads to severe impairment in the oxidative phosphorylation system, concurrent with a decrease in mitochondrial translation and reduced monosome formation. Overall, our data indicate an important role of GTPBP5 in mitochondrial function and suggest its involvement in the late-stage of mt-LSU maturation.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Neoplasias Óseas/patología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Osteosarcoma/patología , Fosforilación Oxidativa , Mapeo de Interacción de Proteínas
8.
Front Genet ; 11: 761, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765591

RESUMEN

Ribosomal RNA (rRNA) from all organisms undergoes post-transcriptional modifications that increase the diversity of its composition and activity. In mitochondria, specialized mitochondrial ribosomes (mitoribosomes) are responsible for the synthesis of 13 oxidative phosphorylation proteins encoded by the mitochondrial genome. Mitoribosomal RNA is also modified, with 10 modifications thus far identified and all corresponding modifying enzymes described. This form of epigenetic regulation of mitochondrial gene expression affects mitoribosome biogenesis and function. Here, we provide an overview on rRNA methylation and highlight critical work that is beginning to elucidate its role in mitochondrial gene expression. Given the similarities between bacterial and mitochondrial ribosomes, we focus on studies involving Escherichia coli and human models. Furthermore, we highlight the use of state-of-the-art technologies, such as cryoEM in the study of rRNA methylation and its biological relevance. Understanding the mechanisms and functional relevance of this process represents an exciting frontier in the RNA biology and mitochondrial fields.

9.
Cell Rep ; 29(6): 1728-1738.e9, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693908

RESUMEN

Mitochondria harbor specialized ribosomes (mitoribosomes) necessary for the synthesis of key membrane proteins of the oxidative phosphorylation (OXPHOS) machinery located in the mitochondrial inner membrane. To date, no animal model exists to study mitoribosome composition and mitochondrial translation coordination in mammals in vivo. Here, we create MitoRibo-Tag mice as a tool enabling affinity purification and proteomics analyses of mitoribosomes and their interactome in different tissues. We also define the composition of an assembly intermediate formed in the absence of MTERF4, necessary for a late step in mitoribosomal biogenesis. We identify the orphan protein PUSL1, which interacts with a large subunit assembly intermediate, and demonstrate that it is an inner-membrane-associated mitochondrial matrix protein required for efficient mitochondrial translation. This work establishes MitoRibo-Tag mice as a powerful tool to study mitoribosomes in vivo, enabling future studies on the mitoribosome interactome under different physiological states, as well as in disease and aging.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Corazón/fisiología , Riñón/metabolismo , Hígado/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Miocardio/metabolismo , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Proteómica , Proteínas Ribosómicas/genética , Factores de Transcripción/genética
10.
Nucleic Acids Res ; 47(17): 9386-9399, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31396629

RESUMEN

In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain-an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , ARN Mitocondrial/genética , Proteínas de Unión al ARN/genética , Animales , Células HEK293 , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Ribosomas Mitocondriales/metabolismo , ARN Mensajero/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...