Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 109: 108029, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387123

RESUMEN

Cancer is a global public health problem characterized by deviations in the mechanisms that control cell proliferation, resulting in mutations and variations in the structure of DNA. The mechanisms of action of chemotherapeutic drugs are related to their interactions and binding with DNA; consequently, the development of antineoplastic agents that target DNA has extensively focused on use of acridine, a heterocyclic molecule that binds to deoxyribonucleic acid via intercalation, a process that modifies DNA and makes replication impossible. In this context, this study aimed to computationally investigate how acridine intercalators interact with DNA by evaluating the mechanism of interactions, binding, and interaction energies using quantum mechanics calculations. Molecular electrostatic potential (MEP) analysis revealed that acridine has well- distributed negative charges in the center of the molecule, indicative of a dominant electron-rich region. Acridine exhibits well-defined π orbitals (HOMO and LUMO) on the aromatic rings, suggesting that charge transfer occurs within the molecule and may be responsible for the pharmacological activity of the compound. Structural analysis revealed that acridine interacts with DNA mainly through hydrogen bonds between HAcridine… ODNA with bond lengths ranging from 2.370 Što 3.472 Å. The Binding energy (ΔEBind) showed that acridine interacts with DNA effectively for all complexes and the electronic energy results (E+ZPE) for complexes revealed that the complexes are more stable when the DNA-centered acridine molecule. The Laplacian-analysis topological QTAIM parameter (∇2ρ(r)) and total energy (H(r)) categorized the interactions as being non-covalent in nature. The RGD peak distribution in the NCI analysis reveals the presence of van der Waals interactions, predominantly between the intercalator and DNA. Accordingly, we confirm that acridine/DNA interactions are relevant for understanding how the intercalator acts within nucleic acids.


Asunto(s)
Antineoplásicos , Sustancias Intercalantes , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/química , Modelos Moleculares , Acridinas/farmacología , ADN/química , Antineoplásicos/farmacología
2.
J Mol Model ; 29(3): 77, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36840887

RESUMEN

In this work the diastereoisomers (2S) and (2R)-naringenin-6-C-ß-D-glucopyroside, isolated for the first time from Clitoria guianensis, were studied using the density functional theory. The frontier molecular orbitals and structural properties showed that the diastereoisomers exhibit the same energy gap 166.61 kcal mol-1 and structural properties different, where in the S diastereoisomer, the bond length between the chiral carbon and the phenolic group is greater (difference of 0.0126 Å). The HPLC data showed that the retention time of the S-diastereoisomer (16.7 min) is shorter than that of R, suggesting that the S compound is more polar than R. The HPLC results corroborates with the molecular electrostatic potential which showed that in the S configuration, the electronegative density was more intense overall, particularly in the glucose molecule. The reactivity indices showed that the diastereoisomers are good electrophiles and reactive species. Finally, the absolute configuration of the diastereoisomers were determined using electronic circular dichroism (ECD) spectroscopy and the theoretical spectra were similar to the experimental. METHODS : All calculations of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT) were performed using the program Gaussian 09 and the structures of the diastereoisomers were generated and analyzed using the GaussView program. The optimization and vibrational frequency calculations were performed using the functional CAM-B3LYP and 6-311 + + G(2d,2p) basis set. Conformational searches were performed for R configuration, by molecular mechanics using the MM + , MMFF, and OPLS05 force fields; the entire molecular mechanics simulation was performed using the Maestro/MacroModel software. The calculations for the simulations of the ECD spectra were performed for the eight lowest energy conformers obtained in the geometric optimization step, and the TDDFT at the CAM-B3LYP/6-311 + + G(2d,2p) theory level used. The effects of methanol and chloroform were calculated using the SMD implicit solvent model.


Asunto(s)
Clitoria , Estructura Molecular , Dicroismo Circular , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...