Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neural Circuits ; 17: 1197278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529715

RESUMEN

Introduction: On Earth, self-produced somatosensory stimuli are typically perceived as less intense than externally generated stimuli of the same intensity, a phenomenon referred to as somatosensory attenuation (SA). Although this phenomenon arises from the integration of multisensory signals, the specific contribution of the vestibular system and the sense of gravity to somatosensory cognition underlying distinction between self-generated and externally generated sensations remains largely unknown. Here, we investigated whether temporary modulation of the gravitational input by head-down tilt bed rest (HDBR)-a well-known Earth-based analog of microgravity-might significantly affect somatosensory perception of self- and externally generated stimuli. Methods: In this study, 40 healthy participants were tested using short-term HDBR. Participants received a total of 40 non-painful self- and others generated electrical stimuli (20 self- and 20 other-generated stimuli) in an upright and HDBR position while blindfolded. After each stimulus, they were asked to rate the perceived intensity of the stimulation on a Likert scale. Results: Somatosensory stimulations were perceived as significantly less intense during HDBR compared to upright position, regardless of the agent administering the stimulus. In addition, the magnitude of SA in upright position was negatively correlated with the participants' somatosensory threshold. Based on the direction of SA in the upright position, participants were divided in two subgroups. In the subgroup experiencing SA, the intensity rating of stimulations generated by others decreased significantly during HDBR, leading to the disappearance of the phenomenon of SA. In the second subgroup, on the other hand, reversed SA was not affected by HDBR. Conclusion: Modulation of the gravitational input by HDBR produced underestimation of somatosensory stimuli. Furthermore, in participants experiencing SA, the reduction of vestibular inputs by HDBR led to the disappearance of the SA phenomenon. These findings provide new insights into the role of the gravitational input in somatosensory perception and have important implications for astronauts who are exposed to weightlessness during space missions.


Asunto(s)
Vestíbulo del Laberinto , Ingravidez , Humanos , Reposo en Cama , Inclinación de Cabeza , Vestíbulo del Laberinto/fisiología , Percepción
2.
Neurosci Biobehav Rev ; 152: 105248, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37247829

RESUMEN

INTRODUCTION: In recent decades, new virtual reality (VR)-based protocols have been proposed for the rehabilitation of Unilateral Spatial Neglect (USN), a debilitating disorder of spatial awareness. However, it remains unclear which type of VR protocol and level of VR immersion can maximize the clinical benefits. To answer these questions, we conducted a systematic review of the use of VR for the rehabilitation of USN. METHOD: Studies between 2000 and 2022 that met the inclusion criteria were classified according to their research design and degree of immersion (non-immersive, NIVR; semi-immersive, SIVR; immersive, IVR). RESULTS: A total of 375 studies were identified, of which 26 met the inclusion criteria. Improvements were found in 84.6% of the reviewed studies: 85.7% used NIVR, 100% used SIVR and 55.6% used IVR. However, only 42.3% of them included a control group and only 19.2% were randomized control trials (RCT). CONCLUSION: VR protocols may offer new opportunities for USN rehabilitation, although further RCTs are needed to validate their clinical efficacy.


Asunto(s)
Trastornos de la Percepción , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Realidad Virtual , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Resultado del Tratamiento
3.
Front Hum Neurosci ; 15: 734235, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924978

RESUMEN

In the present article, we investigated the possibility of inducing phantom tactile sensations in healthy individuals similar to those that we observed in patients after stroke. On the basis of previous research, we assumed that manipulating visual feedbacks may guide and influence, under certain conditions, the phenomenal experience of touch. To this aim, we used the Tactile Quadrant Stimulation (TQS) test in which subjects, in the crucial condition, must indicate whether and where they perceive a double tactile stimulation applied simultaneously in different quadrants of the two hands (asymmetrical Double Simultaneous Stimulation trial, Asym-DSS). The task was performed with the left-hand out of sight and the right-hand reflected in a mirror so that the right-hand reflected in the mirror looks like the own left-hand. We found that in the Asym-DSS trial, the vision of the right-hand reflected in the mirror and stimulated by a tactile stimulus elicited on the left-hand the sensation of having been touched in the same quadrant as the right-hand. In other words, we found in healthy subjects the same phantom touch effect that we previously found in patients. We interpreted these results as modulation of tactile representation by bottom-up (multisensory integration of stimuli coming from the right real and the right reflected hand) and possibly top-down (body ownership distortion) processing triggered by our experimental setup, unveiling bilateral representation of touch.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...