Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 260: 127012, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35430488

RESUMEN

Recent advances have highlighted probiotic role in preventing colorectal cancer, by promoting differentiation, inhibiting proliferation, and inducing apoptosis in colonocytes. Here, three ascertained probiotics (L. rhamnosus GG ATCC 53103, L. reuterii DSM 17938 and L. johnsonii LC1) and four food-isolated putative probiotics (L. plantarum S2, L. plantarum O2, L. pentosus S3, L. rhamnosus 14E4) were investigated for their ability to adhere to HT29 cancer cells and to inhibit their and the chemoresistant counterpart (HT29-dx cells) proliferation. Three putative probiotics (S2, S3 and 14E4) were able to decrease viability of both sensitive and chemo-resistant HT-29 cells. Supposing this effect related to secreted metabolites (namely short chain fatty acids (SCFA), exopolysaccharides (EPS) and extracellular proteins) we tested the efficacy of extracellular extracts and butyrate with or without the chemotherapeutic agent doxorubicin (DOXO) (10 µM, 4 h). Increased production of mitochondrial reactive oxygen species (ROS) in HT29 and HT29-dx cells was observed. Moreover, cell exposure to DOXO (10 µM, 24 h) and extracellular extracts (48 h) reduced cell viability. Comparative phenotypic and secretome analyses on the effective/non effective strains, revealed quantitative/qualitative differences in EPS content and protein profiles, suggesting that P40, phage-tail-like and capsid-like proteins may be also involved. These results suggest that food-isolated bacteria releasing bioactive compounds (butyrate, EPS and peculiar proteins) may control cancer cell proliferation and improve their response to chemotherapy.


Asunto(s)
Neoplasias , Probióticos , Butiratos/farmacología , Supervivencia Celular , Células HT29 , Humanos , Extractos Vegetales , Probióticos/farmacología
2.
Plant Biol (Stuttg) ; 22(3): 404-409, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32027456

RESUMEN

Caleosins are involved in several cellular and biological processes that are closely associated with the synthesis, degradation and stability of oil bodies (OB). Because of the importance and the multiple roles of these OB-associated proteins, in silico identification of sequences corresponding to putative caleosins in the hazelnut genome has been performed, and the association with seed OB was verified using a proteomic approach. Five full-length sequences (CavCLO-H1, CavCLO-H2, CavCLO-H3, CavCLO-L1, CavCLO-L2), belonging to the two groups of caleosins (H and L), have been identified in the hazelnut genome. The number of identified caleosins is in agreement with that previously observed in other plant species, confirming that caleosins comprise small gene families in plants. A proteomic approach allowed us to verify only the presence of CavCLO-H1 in hazelnut OB, suggesting that several members inside this family could have different roles during plant growth and development. In silico analysis also suggests that CavCLO-H1 may act as a peroxygenase.


Asunto(s)
Proteínas de Unión al Calcio , Corylus , Gotas Lipídicas , Proteínas de Plantas , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Corylus/genética , Corylus/crecimiento & desarrollo , Genoma de Planta/genética , Gotas Lipídicas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica
3.
Case Rep Genet ; 2014: 691630, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25045550

RESUMEN

Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder included in the broader diagnostic category of myeloproliferative neoplasms, associated with fusion by BCR gene at chromosome 22q11 to ABL1 gene at chromosome 9q34 with the formation of the Philadelphia (Ph) chromosome. In 2-10% of CML cases, the fusion gene arises in connection with a variant translocation, involving chromosomes 9, 22, and one or more different chromosomes; consequently, the Ph chromosome could be masked within a complex chromosome rearrangement. In cases with variant Ph translocation a deletion on der(9) may be more frequently observed than in cases with the classical one. Herein we describe a novel case of CML with complex variant Ph translocation involving chromosomes 9, 12, and 22. We present the hematologic response and cytogenetic response after Imatinib treatment. We also speculated the mechanism which had originated the chromosome rearrangement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA