Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Biol ; 90(1): 45-52, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24168161

RESUMEN

PURPOSE: The meiotic recombination protein 11 (MRE11), radiation sensitive 50 (RAD50) and nibrin (NBN) are members of the MRE11/RAD50/NBN (MRN) complex which plays a fundamental role in the double-strand break damage response, including DNA damage sensing, signalling and repair after exposure to ionizing radiations. In addition the MRN complex is involved in the mechanisms regulating telomere length maintenance. Based on our previous results indicating that, in contrast to X-rays, high linear energy transfer (LET) radiations were able to elongate telomeres, we investigated the behavior of cells mutated in components of the MRN complex after exposure either to 62 MeV carbon-ions (50 keV/µm, at cell surface) or X-rays. MATERIALS AND METHODS: Epstein Barr Virus (EBV)-transformed lymphoblastoid cell lines (LCL) established from normal, heterozygous for the NBN gene, homozygous for either mutant/deleted NBN, RAD50 or ataxia telangiectasia mutated (ATM) genes were irradiated with 4 Gy, with telomere length being evaluated 24 h later or in time course-experiments up to 15 days later. The induction of telomeric sister chromatid exchanges (T-SCE) was measured as a hallmark of homologous directed recombinational repair. RESULTS: NBN and RAD50 mutated cells failed to elongate telomeres that instead occurred in the remaining cell lines as a response only to high-LET irradiation. Also, a kinetic study with 0.5-4 Gy up to 15 days from irradiation confirmed that NBN gene was indispensable for telomere elongation. Furthermore, such an elongation, was accompanied by an increased frequency of sister chromatid exchanges at telomeres (T-SCE). In contrast, the induction of genomic sister chromatid exchanges (G-SCE) occurred for carbon-ions irrespective of NBN gene status. CONCLUSIONS: We speculate that the MRN is necessary to process a subclass of high-LET radiation-induced complex DNA damage through a recombinational-repair mediated mechanism which in turn is responsible for telomere elongation.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Linfocitos/efectos de la radiación , Síndrome de Nijmegen/patología , Síndrome de Nijmegen/fisiopatología , Homeostasis del Telómero/efectos de la radiación , Ácido Anhídrido Hidrolasas , Células Cultivadas , Daño del ADN , Reparación del ADN/efectos de la radiación , Humanos , Proteína Homóloga de MRE11
2.
Oxid Med Cell Longev ; 2012: 498914, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829956

RESUMEN

Following previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL) in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H(2)O(2). 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively. We assessed apoptosis, cell cycle distributions, and DL. Menadione, H(2)O(2) and quercetin were potent inducers of apoptosis and DL inhibitors. Quercetin decreased clonogenic survival and the NAD(P)H level in a dose-dependent manner. Proton irradiation with 2 Gy but not 10 Gy increased the apoptotic rate. However, both doses induced a substantial G(2)/M arrest. Quercetin reduced apoptosis and prolonged the G(2)/M arrest induced by radiation. DL spectroscopy indicated that proton irradiation disrupted the electron flow within Complex I of the mitochondrial respiratory chain, thus explaining the massive necrosis induced by 10 Gy of protons and also suggested an equivalent action of menadione and quercetin at the level of the Fe/S center N2, which may be mediated by their binding to a common site within Complex I, probably the rotenone-binding site.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Flavonoides/farmacología , Leucemia/patología , Luminiscencia , Oxidantes/toxicidad , Protones , Catequina/análogos & derivados , Catequina/farmacología , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Clonales , Humanos , Peróxido de Hidrógeno/toxicidad , Células Jurkat , Cinética , NADP/metabolismo , Teoría Cuántica , Quercetina/farmacología , Factores de Tiempo , Vitamina K 3/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA