Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geroscience ; 44(2): 1047-1069, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33983623

RESUMEN

Brain aging may be programmed by early-life stress. Aging affects males and females differently, but how perinatal stress (PRS) affects brain aging between sexes is unknown. We showed behavioral and neurobiological sex differences in non-stressed control rats that were strongly reduced or inverted in PRS rats. In particular, PRS decreased risk-taking behavior, spatial memory, exploratory behavior, and fine motor behavior in male aged rats. In contrast, female aged PRS rats displayed only increased risk-taking behavior and reduced exploratory behavior. PRS induced large reductions in the expression of glutamate receptors in the ventral and dorsal hippocampus and prefrontal cortex only in male rats. PRS also reduced the expression of synaptic vesicle-associated proteins, glucocorticoid receptors (GR), and mineralocorticoid receptors (MR) in the ventral hippocampus of aged male rats. In contrast, in female aged rats, PRS enhanced the expression of MRs and brain-derived neurotrophic factor (BDNF) in the ventral hippocampus and the expression of glial fibrillary acidic protein (GFAP) and BDNF in the prefrontal cortex. A common PRS effect in both sexes was a reduction in exploratory behavior and metabotropic glutamate (mGlu2/3) receptors in the ventral hippocampus and prefrontal cortex. A multidimensional analysis revealed that PRS induced a demasculinization profile in glutamate-related proteins in the ventral and dorsal hippocampus and prefrontal cortex, as well as a demasculinization profile of stress markers only in the dorsal hippocampus. In contrast, defeminization was observed only in the ventral hippocampus. Measurements of testosterone and 17-ß-estradiol in the plasma and aromatase in the dorsal hippocampus were consistent with a demasculinizing action of PRS. These findings confirm that the brains of males and females differentially respond to PRS and aging suggesting that females might be more protected against early stress and age-related inflammation and neurodegeneration. Taken together, these results may contribute to understanding how early environmental factors shape vulnerability to brain aging in both sexes and may lay the groundwork for future studies aimed at identifying new treatment strategies to improve the quality of life of older individuals, which is of particular interest given that there is a high growth of aging in populations around the world.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Estrés Psicológico , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Femenino , Ácido Glutámico/metabolismo , Masculino , Embarazo , Calidad de Vida , Ratas
2.
Front Pharmacol ; 12: 670158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366842

RESUMEN

Whether exosomes can be actively released from presynaptic nerve terminals is a matter of debate. To address the point, mouse cortical synaptosomes were incubated under basal and depolarizing (25 mM KCl-enriched medium) conditions, and extracellular vesicles were isolated from the synaptosomal supernatants to be characterized by dynamic light scattering, transmission electron microscopy, Western blot, and flow cytometry analyses. The structural and biochemical analysis unveiled that supernatants contain vesicles that have the size and the shape of exosomes, which were immunopositive for the exosomal markers TSG101, flotillin-1, CD63, and CD9. The marker content increased upon the exposure of nerve terminals to the high-KCl stimulus, consistent with an active release of the exosomes from the depolarized synaptosomes. High KCl-induced depolarization elicits the Ca2+-dependent exocytosis of glutamate. Interestingly, the depolarization-evoked release of exosomes from cortical synaptosomes also occurred in a Ca2+-dependent fashion, since the TSG101, CD63, and CD9 contents in the exosomal fraction isolated from supernatants of depolarized synaptosomes were significantly reduced when omitting external Ca2+ ions. Differently, (±)-baclofen (10 µM), which significantly reduced the glutamate exocytosis, did not affect the amount of exosomal markers, suggesting that the GABAB-mediated mechanism does not control the exosome release. Our findings suggest that the exposure of synaptosomes to a depolarizing stimulus elicits a presynaptic release of exosomes that occurs in a Ca2+-dependent fashion. The insensitivity to the presynaptic GABAB receptors, however, leaves open the question on whether the release of exosomes could be a druggable target for new therapeutic intervention for the cure of synaptopathies.

3.
Neuropharmacology ; 196: 108692, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34217776

RESUMEN

Group II metabotropic glutamate receptors (mGlu2 and mGlu3 receptors) shape mechanisms of methamphetamine addiction, but the individual role played by the two subtypes is unclear. We measured methamphetamine-induced conditioned place preference (CPP) and motor responses to single or repeated injections of methamphetamine in wild-type, mGlu2-/-, and mGlu3-/-mice. Only mGlu3-/-mice showed methamphetamine preference in the CPP test. Motor response to the first methamphetamine injection was dramatically reduced in mGlu2-/-mice, unless these mice were treated with the mGlu5 receptor antagonist, MTEP. In contrast, methamphetamine-induced sensitization was increased in mGlu3-/-mice compared to wild-type mice. Only mGlu3-/-mice sensitized to methamphetamine showed increases in phospho-ERK1/2 levels in the nucleus accumbens (NAc) and free radical formation in the NAc and medial prefrontal cortex. These changes were not detected in mGlu2-/-mice. We also measured a series of biochemical parameters related to the mechanism of action of methamphetamine in naïve mice to disclose the nature of the differential behavioural responses of the three genotypes. We found a reduced expression and activity of dopamine transporter (DAT) and vesicular monoamine transporter-2 in the NAc and striatum of mGlu2-/-and mGlu3-/-mice, whereas expression of the DAT adaptor, syntaxin 1A, was selectively increased in the striatum of mGlu3-/-mice. Methamphetamine-stimulated dopamine release in striatal slices was largely reduced in mGlu2-/-, but not in mGlu3-/-, mice. These findings suggest that drugs that selectively enhance mGlu3 receptor activity or negatively modulate mGlu2 receptors might be beneficial in the treatment of methamphetamine addiction and associated brain damage.


Asunto(s)
Trastornos Relacionados con Anfetaminas/metabolismo , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Clásico/efectos de los fármacos , Metanfetamina/farmacología , Receptores de Glutamato Metabotrópico/genética , Trastornos Relacionados con Anfetaminas/fisiopatología , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Fosforilación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Sintaxina 1/efectos de los fármacos , Sintaxina 1/metabolismo , Tiazoles/farmacología , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
4.
Front Immunol ; 12: 586521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717067

RESUMEN

Antibodies recognizing the amino-terminal domain of receptor subunit proteins modify the receptor efficiency to controlling transmitter release in isolated nerve endings (e.g., synaptosomes) indirectly confirming their presence in these particles but also allowing to speculate on their subunit composition. Western blot analysis and confocal microscopy unveiled the presence of the GluA1, GluA2, GluA3, and GluA4 receptor subunits in cortical synaptosomes. Functional studies confirmed the presence of presynaptic release-regulating AMPA autoreceptors in these terminals, whose activation releases [3H]D-aspartate ([3H]D-Asp, here used as a marker of glutamate) in a NBQX-dependent manner. The AMPA autoreceptors traffic in a constitutive manner, since entrapping synaptosomes with the pep2-SVKI peptide (which interferes with the GluA2-GRIP1/PICK1 interaction) amplified the AMPA-evoked releasing activity, while the inactive pep2-SVKE peptide was devoid of activity. Incubation of synaptosomes with antibodies recognizing the NH2 terminus of the GluA2 and the GluA3 subunits increased, although to a different extent, the GluA2 and 3 densities in synaptosomal membranes, also amplifying the AMPA-evoked glutamate release in a NBQX-dependent fashion. We then analyzed the releasing activity of complement (1:300) from both treated and untreated synaptosomes and found that the complement-induced overflow occurred in a DL-t-BOA-sensitive, NBQX-insensitive fashion. We hypothesized that anti-GluA/GluA complexes in neuronal membranes could trigger the classic pathway of activation of the complement, modifying its releasing activity. Accordingly, the complement-evoked release of [3H]D-Asp from antiGluA2 and anti-GluA3 antibody treated synaptosomes was significantly increased when compared to untreated terminals and facilitation was prevented by omitting the C1q component of the immunocomplex. Antibodies recognizing the NH2 terminus of the GluA1 or the GluA4 subunits failed to affect both the AMPA and the complement-evoked tritium overflow. Our results suggest the presence of GluA2/GluA3-containing release-regulating AMPA autoreceptors in cortical synaptosomes. Incubation of synaptosomes with commercial anti-GluA2 or anti-GluA3 antibodies amplifies the AMPA-evoked exocytosis of glutamate through a complement-independent pathway, involving an excessive insertion of AMPA autoreceptors in plasma membranes but also affects the complement-dependent releasing activity, by promoting the classic pathway of activation of the immunocomplex. Both events could be relevant to the development of autoimmune diseases typified by an overproduction of anti-GluA subunits.


Asunto(s)
Anticuerpos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Subunidades de Proteína/antagonistas & inhibidores , Receptores AMPA/antagonistas & inhibidores , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Corteza Cerebral/metabolismo , Complemento C1q/inmunología , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Receptores AMPA/química , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
5.
Neurobiol Stress ; 13: 100265, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344718

RESUMEN

Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH+) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine. Striatal levels of DA and its metabolites were increased in PRS rats. In contrast, D2 DA receptor signaling was reduced and A2A adenosine receptor signaling was increased in the striatum of adult PRS rats. This indicated enhanced activity of the indirect pathway of the basal ganglia motor circuit. Adult PRS rats also showed poorer performance in the grip strength test and motor learning tasks. The aged PRS rats also showed a persistent reduction in striatal DA release and defective motor skills in the pasta matrix and ladder rung walking tests. In addition, the old rats showed large increases in the levels of SNAP-25 and synaptophysin, which are synaptic vesicle-related proteins in the striatum, and in the PRS group only, reductions in Syntaxin-1 and Rab3a protein levels were observed. Our findings indicated that the age-dependent threshold for motor dysfunction was lowered in PRS rats. This area of research is underdeveloped, and our study suggests that early-life stress can contribute to an increased understanding of how aging diseases are programmed in early-life.

6.
Nutrients ; 12(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138077

RESUMEN

Anxiety disorders are common and complex psychiatric syndromes affecting a broad spectrum of patients. On top of that, we know that aging produces an increase in anxiety vulnerability and sedative consumption. Moreover, stress disorders frequently show a clear gender susceptibility. Currently, the approved pharmacological strategies have severe side effects such as hallucinations, addiction, suicide, insomnia, and loss of motor coordination. Dietary integration with supplements represents an intriguing strategy for improving the efficacy and the safety of synthetic anxiolytics. Accordingly, a recent article demonstrated that glyceric bud extracts from Tilia tomentosa Moench (TTBEs) exert effects that are consistent with anxiolytic activity. However, the effects of these compounds in vivo are unknown. To examine this question, we conducted behavioral analysis in mice. A total of 21 days of oral supplements (vehicle and TTBEs) were assessed by Light Dark and Hole Board tests in male and female mice (young, 3 months; old, 24 months). Interestingly, the principal component analysis revealed gender and age-specific behavioral modulations. Moreover, the diet integration with the botanicals did not modify the body weight gain and the daily intake of water. Our results support the use of TTBEs as dietary supplements for anxiolytic purposes and unveil age and gender-dependent responses.


Asunto(s)
Ansiolíticos/farmacología , Trastornos de Ansiedad/terapia , Suplementos Dietéticos , Extractos Vegetales/farmacología , Tilia/química , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Análisis de Componente Principal , Factores Sexuales
7.
Front Pharmacol ; 11: 1108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765286

RESUMEN

We investigated whether chronic sciatic ligation modifies the glutamate release in spinal cord nerve endings (synaptosomes) as well as the expression and the function of presynaptic release-regulating mGlu2/3 autoreceptors and 5-HT2A heteroreceptors in these particles. Synaptosomes were from the spinal cord of animals suffering from the sciatic ligation that developed on day 6 post-surgery a significant decrease of the force inducing paw-withdrawal in the lesioned paw. The exocytosis of glutamate (quantified as release of preloaded [3H]D-aspartate, [3H]D-Asp) elicited by a mild depolarizing stimulus (15 mM KCl) was significantly increased in synaptosomes from injured rats when compared to controls (uninjured rats). The mGlu2/3 agonist LY379268 (1000 pM) significantly inhibited the 15 mM KCl-evoked [3H]D-Asp overflow from control synaptosomes, but not in terminals isolated from injured animals. Differently, a low concentration (10 nM) of (±) DOI, unable to modify the 15 mM KCl-evoked [3H]D-Asp overflow in control spinal cord synaptosomes, significantly reduced the glutamate exocytosis in nerve endings isolated from the injured rats. Acute oral trazodone (TZD, 0.3 mg/kg on day 7 post-surgery) efficiently recovered glutamate exocytosis as well as the efficiency of LY379268 in inhibiting this event in spinal cord synaptosomes from injured animals. The sciatic ligation significantly reduced the expression of mGlu2/3, but not of 5-HT2A, receptor proteins in spinal cord synaptosomal lysates. Acute TZD recovered this parameter. Our results support the use of 5-HT2A antagonists for restoring altered spinal cord glutamate plasticity in rats suffering from sciatic ligation.

8.
Int J Mol Sci ; 21(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455600

RESUMEN

The immune system and the central nervous system message each other to preserving central homeostasis. Both systems undergo changes during aging that determine central age-related defects. Ellagic acid (EA) is a natural product which is beneficial in both peripheral and central diseases, including aging. We analyzed the impact of the oral administration of a new oral ellagic acid micro-dispersion (EAm), that largely increased the EA solubility, in young and old mice. Oral EAm did not modify animal weight and behavioral skills in young and old mice, but significantly recovered changes in "ex-vivo, in vitro" parameters in old animals. Cortical noradrenaline exocytosis decreased in aged mice. EAm administration did not modify noradrenaline overflow in young animals, but recovered it in old mice. Furthermore, GFAP staining was increased in the cortex of aged mice, while IBA-1 and CD45 immunopositivities were unchanged when compared to young ones. EAm treatment significantly reduced CD45 signal in both young and old cortical lysates; it diminished GFAP immunopositivity in young mice, but failed to affect IBA-1 expression in both young and old animals. Finally, EAm treatment significantly reduced IL1beta expression in old mice. These results suggest that EAm is beneficial to aging and represents a nutraceutical ingredient for elders.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antiinflamatorios/farmacología , Encéfalo/efectos de los fármacos , Ácido Elágico/farmacología , Administración Oral , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Antiinflamatorios/administración & dosificación , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Ácido Elágico/administración & dosificación , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Movimiento
9.
Curr Neuropharmacol ; 18(7): 655-672, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31775600

RESUMEN

Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS). In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors. mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling. The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.


Asunto(s)
Sistema Nervioso Central/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Receptores Presinapticos/fisiología , Animales , Humanos , Sinapsis/fisiología , Transmisión Sináptica , Sinaptosomas/metabolismo
10.
Neurobiol Aging ; 86: 143-155, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31784278

RESUMEN

Despite the great effort of the scientific community in the field, the pathogenesis of frontotemporal dementia (FTD) remains elusive. Recently, a role for autoimmunity and altered glutamatergic neurotransmission in triggering disease onset has been put forward. We reported the presence of autoantibodies recognizing the GluA3 subunit of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in about 25% of FTD cases. In this study, we evaluated the mechanisms involved in anti-GluA3 autoimmunity, through molecular/neurochemical analyses conducted on patients' brain specimens with frontotemporal lobar degeneration-tau neuropathology. We then corroborated these results in vivo in FTD patients with transcranial magnetic stimulation and glutamate, D-serine, and L-serine dosages in the cerebrospinal fluid and serum. We observed that GluA3 autoantibodies affect glutamatergic neurotransmission, decreasing glutamate release and altering GluA3-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor levels. These alterations were accompanied by changes of scaffolding proteins involved in receptor synaptic retention/internalization. The above results were confirmed by transcranial magnetic stimulation, suggesting a significant impairment of indirect measures of glutamatergic neurotransmission in FTD patients compared with controls, with further add-on harmful effect in those FTD patients with anti-GluA3 antibodies. Finally, FTD patients showed a significant increase of glutamate, D-serine, and L-serine levels in the cerebrospinal fluid.


Asunto(s)
Autoanticuerpos , Demencia Frontotemporal/etiología , Demencia Frontotemporal/inmunología , Demencia Frontotemporal/fisiopatología , Glutamatos/líquido cefalorraquídeo , Receptores AMPA/inmunología , Sinapsis/fisiología , Transmisión Sináptica , Adulto , Autoinmunidad , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
Neurochem Int ; 126: 59-63, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30858017

RESUMEN

We investigated the impact of the prolonged exposure of rat hippocampal synaptosomes to CXCL12 (3 nM) on the NMDA-mediated release of [3H]D-aspartate ([3H]D-Asp) or [3H]noradrenaline ([3H]NA). Synaptosomes were stimulated twice with NMDA/CXCL12 and the amount of the NMDA-evoked tritium release (S1 and S2) quantified to calculate the S2/S1 ratio. The S2/S1 ratio for both transmitters was drastically decreased by 3 nM CXCL12 between the two stimuli (CXCL12-treated synaptosomes) in a AMD3100-sensitive manner. The phosphorylation of the GluN1 subunit in Ser 896 was reduced in CXCL12-treated synaptosomes, while the overall amount of GluN1 and GluN2B proteins as well as the GluN2B insertion in synaptosomal plasmamembranes were unchanged. We conclude that the CXCR4/NMDA cross-talk is dynamically regulated by the time of activation of the CXCR4s. Our results unveil a functional cross-talk that might account for the severe impairments of central transmission that develop in pathological conditions characterized by CXCL12 overproduction.


Asunto(s)
Hipocampo/metabolismo , Terminales Presinápticos/metabolismo , Receptores CXCR4/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinaptosomas/metabolismo , Animales , Quimiocina CXCL12/farmacología , Hipocampo/efectos de los fármacos , N-Metilaspartato/farmacología , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinaptosomas/efectos de los fármacos
12.
Mol Neurobiol ; 56(9): 6142-6155, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30734226

RESUMEN

Mouse hippocampal glutamatergic nerve endings express presynaptic release-regulating NMDA autoreceptors (NMDARs). The presence of GluN1, GluN2A, GluN2B, and GluN3A subunits in hippocampal vesicular glutamate transporter type 1-positive synaptosomes was confirmed with confocal microscopy. GluN2C, GluN2D, and GluN3B immunopositivity was scarcely present. Incubation of synaptosomes with the anti-GluN1, the anti-GluN2A, the anti-GluN2B, or the anti-GluN3A antibody prevented the 30 µM NMDA/1 µM glycine-evoked [3H]D-aspartate ([3H]D-ASP) release. The NMDA/glycine-evoked [3H]D-ASP release was reduced by increasing the external protons, consistent with the participation of GluN1 subunits lacking the N1 cassette to the receptor assembly. The result also excludes the involvement of GluN1/GluN3A dimers into the NMDA-evoked overflow. Complement (1:300) released [3H]D-ASP in a dizocilpine-sensitive manner, suggesting the participation of a NMDAR-mediated component in the releasing activity. Accordingly, the complement-evoked glutamate overflow was reduced in anti-GluN-treated synaptosomes when compared to the control. We speculated that incubation with antibodies had favored the internalization of NMDA receptors. Indeed, a significant reduction of the GluN1 and GluN2B proteins in the plasma membranes of anti-GluN1 or anti-GluN2B antibody-treated synaptosomes emerged in biotinylation studies. Altogether, our findings confirm the existence of presynaptic GluN3A-containing release-regulating NMDARs in mouse hippocampal glutamatergic nerve endings. Furthermore, they unveil presynaptic alteration of the GluN subunit insertion in synaptosomal plasma membranes elicited by anti-GluN antibodies that might be relevant to the central alterations occurring in patients suffering from autoimmune anti-NMDA diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Terminales Presinápticos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Anticuerpos/farmacología , Ácido Aspártico/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Cloruro de Potasio/farmacología , Subunidades de Proteína/metabolismo , Sinaptosomas/metabolismo , Tritio/metabolismo
13.
Front Mol Neurosci ; 11: 324, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30279647

RESUMEN

Mouse cortical GABAergic synaptosomes possess presynaptic inhibitory GABAB autoreceptors. Accordingly, (±)baclofen (3 µM) inhibits in a CGP53423-sensitive manner the 12 mM KCl-evoked release of preloaded [3H]GABA. Differently, the existence of presynaptic release-regulating metabotropic glutamate type 1 (mGlu1) heteroreceptors in these terminals is still matter of discussion, although confocal microscopy unveiled the existence of mGlu1α with GABAB1 or GABAB2 proteins in cortical VGAT-positive synaptosomes. The group I mGlu agonist 3,5-DHPG failed to modify on its own the 12 mM KCl-evoked [3H]GABA exocytosis from cortical nerve endings, but, when added concomitantly to the GABAB agonist, it significantly reduced the 3 µM (±)baclofen-induced inhibition of [3H]GABA exocytosis. Conversely, the mGlu1 antagonist LY367385 (0.03-1 µM), inactive on its own on GABA exocytosis, amplified the 3 µM (±)baclofen-induced inhibition of [3H]GABA overflow. The ( ± )baclofen-induced inhibition of [3H]GABA exocytosis was more pronounced in cortical synaptosomes from Grm1crv4/crv4 mice, which bear a spontaneous mutation of the Grm1 gene leading to the functional inactivation of the mGlu1 receptor. Inasmuch, the expression of GABAB2 receptor protein in cortical synaptosomal lysates from Grm1crv4/crv4 mice was increased when compared to controls. Altogether, these observations seem best interpreted by assuming that mGlu1 coexist with GABAB receptors in GABAergic cortical synaptosomes, where they control GABA receptors in an antagonist-like manner. We then asked whether the mGlu1-mediated control of GABAB receptors is restricted to GABAergic terminals, or if it occurs also in other subpopulations of nerve endings. Release-regulating GABAB receptors also exist in glutamatergic nerve endings. (±)baclofen (1 µM) diminished the 12 mM KCl-evoked [3H]D-aspartate overflow. Also in these terminals, the concomitant presence of 1 µM LY367385, inactive on its own, significantly amplified the inhibitory effect exerted by (±)baclofen on [3H]D-aspartate exocytosis. Confocal microscopy confirmed the colocalization of mGlu1 with GABAB1 and GABAB2 labeling in vesicular glutamate type1 transporter-positive particles. Our results support the conclusion that mGlu1 receptors modulate in an antagonist-like manner presynaptic release-regulating GABAB receptors. This receptor-receptor interaction could be neuroprotective in central disease typified by hyperglutamatergicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...