Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062935

RESUMEN

The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/ß-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.


Asunto(s)
Amidohidrolasas , Endocannabinoides , Pruebas de Enzimas , Endocannabinoides/metabolismo , Humanos , Pruebas de Enzimas/métodos , Amidohidrolasas/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Hidrólisis , Monoacilglicerol Lipasas/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Animales , Fluorometría/métodos , Fluorescencia , Cinética , Colorantes Fluorescentes/química , Inhibidores Enzimáticos/farmacología
2.
Nutrients ; 16(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794644

RESUMEN

Endothelial dysfunction is a crucial event in the early pathogenesis of cardiovascular diseases and is linked to magnesium (Mg) deficiency. Indeed, in endothelial cells, low Mg levels promote the acquisition of a pro-inflammatory and pro-atherogenic phenotype. This paper investigates the mechanisms by which Mg deficiency promotes oxidative stress and affects endothelial behavior in human umbilical vascular endothelial cells (HUVECs). Our data show that low Mg levels trigger oxidative stress initially by increasing NAPDH oxidase activity and then by upregulating the pro-oxidant thioredoxin-interacting protein TXNIP. The overproduction of reactive oxygen species (ROS) activates NF-κB, leading to its increased binding to the inducible nitric oxide synthase (iNOS) promoter, with the consequent increase in iNOS expression. The increased levels of nitric oxide (NO) generated by upregulated iNOS contribute to disrupting endothelial cell function by inhibiting growth and increasing permeability. In conclusion, we provide evidence that multiple mechanisms contribute to generate a pro-oxidant state under low-Mg conditions, ultimately affecting endothelial physiology. These data add support to the notion that adequate Mg levels play a significant role in preserving cardiovascular health and may suggest new approaches to prevent or manage cardiovascular diseases.


Asunto(s)
Endotelio Vascular , Deficiencia de Magnesio , Óxido Nítrico Sintasa de Tipo II , Humanos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Magnesio/metabolismo , Deficiencia de Magnesio/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
3.
J Nutr Biochem ; 126: 109580, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272323

RESUMEN

Breastfeeding is the gold standard in infant nutrition and continuous researches aim to optimize infant formula composition as the best alternative available. Human milk lipid content provides more than 50% of energy requirements for infants together with essential vitamins, polyunsaturated fatty acids, and other bioactive components. While fatty acids and vitamins human milk content has been extensively studied and, when needed those have been added to infant formulas, less is known about polyunsaturated fatty acids functional derivatives and other bioactive components. Here we describe the comparison of lipid compositions in breast milk from 22 healthy volunteers breastfeeding mothers and the six most common infant formula devoting particular attention to two families of signaling lipids, endocannabinoids, and eicosanoids. The main differences between breast milk and formulas lie in a variety of saturated fatty and unsaturated fatty acids, in the total amount (45-95% less in infant formula) and a variety of endocannabinoids and eicosanoids (2-AG, 5(s)HETE, 15(S)-HETE and 14,15-EET).


Asunto(s)
Fórmulas Infantiles , Leche Humana , Lactante , Femenino , Humanos , Leche Humana/química , Fórmulas Infantiles/química , Endocannabinoides , Lípidos/química , Ácidos Grasos/análisis , Ácidos Grasos Insaturados , Vitaminas , Eicosanoides , Ácidos Hidroxieicosatetraenoicos/análisis
4.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569412

RESUMEN

Chios mastic gum, the product of the tree Pistacia lentiscus var. Chia, has been used for more than 2500 years in traditional Greek medicine for treating several diseases, thanks to the anti-inflammatory and antioxidant properties of its components. Despite the long-time use of mastic in gastroenterology and in particular in chronic-inflammation-associated diseases, to date, the literature lacks reviews regarding this topic. The aim of the present work is to summarize available data on the effects of P. lentiscus on inflammatory bowel disease. A comprehensive review of this topic could drive researchers to conduct future studies aimed at deeply investigating P. lentiscus effects and hypothesizing a mechanism of action. The present review, indeed, schematizes the possible bioactive components of mastic gum. Particular care is given to P. lentiscus var. Chia medicaments' and supplements' chemical compositions and their pharmacological action in inflammatory bowel disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Pistacia , Humanos , Resina Mástique , Resinas de Plantas/farmacología , Resinas de Plantas/uso terapéutico , Resinas de Plantas/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pistacia/química , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico
5.
Acta Chim Slov ; 69(3): 571-583, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36196811

RESUMEN

Chemical modifications of natural monoterpenoids to various derivatives have been reported to result in enhancement of biological activities when compared to parent compounds. In this context a well-known biocide and food additive, carvacrol, served as a basic scaffold onto which a phenolic functionality transformation by introducing acyl groups was performed. By using this simple methodology, we obtained a small series of 25 esters. For each of the obtained compounds we have performed structural characterization, in vitro antimicrobial testing and in silico calculation of physico-chemical, pharmacokinetic and toxicological properties. Despite numerous data on the synthesis and bioactivity of carvacryl ester lower homologues, there are scarce data on esters with acid components higher than C9, so that among 25 compounds, 10 were reported for the first time (spectral characterization for 12 are herein the first reported). Our research is also the first comprehensive study of carvacryl esters antifungal and of medium/long chain fatty acid esters antibacterial activities. Interesting result is that all the synthesized esters, regardless the nature of the R residue, have shown activity on fungal strain Aspergilus niger and on yeast Candida albicans comparable to carvacrol. Besides presented experimental data, implementation of in silico calculation of physico-chemical, pharmacokinetic and toxicological properties on the prepared compounds, may be valuable information in further research.


Asunto(s)
Antiinfecciosos , Desinfectantes , Antibacterianos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antifúngicos , Candida albicans , Cimenos , Ésteres/farmacología , Ácidos Grasos , Aditivos Alimentarios , Pruebas de Sensibilidad Microbiana , Monoterpenos/química , Monoterpenos/farmacología , Fenoles , Timol
6.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012304

RESUMEN

The set-up of highly sensitive detection tools to evaluate lipase activity remains a central goal in different fields. In this context, we proposed new chemiluminescent 1,2-dioxetane luminophores, sharing an octanoyl triggerable group, to monitor lipase activity. We herein report the synthesis and both the evaluation of their luminescence emission profile and their enzyme-substrate specificity, generated by three different commercial lipases (Candida cylindracea, Pseudomonas fluorescens, and Mucor miehei) and one esterase (porcine liver esterase, PLE, as a literature control). Remarkably, the present study confirmed the applicability of these 1,2-dioxetane luminophores as (i) highly efficient, broad-range, chemiluminescent probes for the detection and the enzymatic activity evaluation of lipases and as (ii) promising candidates for the future development of both flash- and glow-type luminescence assays.


Asunto(s)
Luminiscencia , Mediciones Luminiscentes , Animales , Candida/metabolismo , Lipasa/metabolismo , Especificidad por Sustrato , Porcinos
7.
Molecules ; 27(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014430

RESUMEN

A simple and practical synthesis of 2-arachidonoyl glycerol (2-AG), an endogenous agonist for cannabinoid receptors, based on a two-step enzymatic process and a chemical coupling, was achieved with a good yield and negligible amount of the isomerization product 1-AG. Commercial preparation of immobilized lipase from Mucor miehei (MML) was selected as the most suitable enzyme to catalyze the efficient protection of glycerol using vinyl benzoate as an acyl transfer reagent in tetrahydrofuran. The same enzyme was used to remove the protective groups in positions 1 and 3. Owing to the mild neutral conditions and easy suitability of the method, 2-AG was obtained without any isomerization to the more stable 1-AG and air oxidation of acid chain. The synthetic method proposed here allows us to easily obtain 2-AG from the protected precursor in a one-step reaction without purification requirement.


Asunto(s)
Ácidos Araquidónicos , Glicerol , Endocannabinoides , Glicéridos , Isomerismo
8.
Nat Prod Res ; 36(24): 6443-6447, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35130809

RESUMEN

Cytokinins are naturally occurring adenine derivatives whose physiological role is that of growth regulators in plants and that show also many other activities either in plants and in mammalian cells. In plants, they can be found mainly as free bases ((N6-substituted adenines, CKs), but also as the corresponding N9- ribosides (N6-substituted adenosines, CKRs). In mammalian cells, CKRs are, in general, more active than CKs. In order to evaluate the intrinsic in vitro antioxidant capacity of some significant CKRs, their scavenging activity against synthetic radicals that are at the basis of well-established antioxidant assays (ORAC, TEAC, DPPH) has been evaluated. The results of the in vitro scavenging activity of biologically relevant radicals such as hydroxyl (HO•), superoxide (O2.-) and lipid peroxides (R-OO.) are reported and discussed.


Asunto(s)
Adenosina , Citocininas , Terpenos/farmacología , Antioxidantes/farmacología , Glicósidos , Adenina
9.
Molecules ; 26(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34770855

RESUMEN

In the last two years, nucleosides analogues, a class of well-established bioactive compounds, have been the subject of renewed interest from the scientific community thanks to their antiviral activity. The COVID-19 global pandemic, indeed, spread light on the antiviral drug Remdesivir, an adenine C-nucleoside analogue. This new attention of the medical community on Remdesivir prompts the medicinal chemists to investigate once again C-nucleosides. One of the essential building blocks to synthetize these compounds is the D-(+)-ribono-1,4-lactone, but some mechanistic aspects linked to the use of different carbohydrate protecting groups remain unclear. Here, we present our investigations on the use of benzylidene as a ribonolactone protecting group useful in the synthesis of C-purine nucleosides analogues. A detailed 1D and 2D NMR structural study of the obtained compounds under different reaction conditions is presented. In addition, a molecular modeling study at the B3LYP/6-31G* level of theory with the SM8 solvation model for CHCl3 and DMSO to support the obtained results is used. This study allows for clarifying mechanistic aspects as the side reactions and structural rearrangements liked to the use of the benzylidene protecting group.


Asunto(s)
Compuestos de Bencilideno/química , Lactonas/química , Nucleósidos/síntesis química , Ribosa/análogos & derivados , Adenina/análogos & derivados , Antivirales/química , COVID-19/prevención & control , Humanos , Lactonas/síntesis química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Nucleósidos/metabolismo , Nucleósidos de Purina , Ribosa/síntesis química , Ribosa/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Estereoisomerismo , Tratamiento Farmacológico de COVID-19
10.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200322

RESUMEN

A novel bioluminescent Monoacylglycerol lipase (MAGL) substrate 6-O-arachidonoylluciferin, a D-luciferin derivative, was synthesized, physico-chemically characterized, and used as highly sensitive substrate for MAGL in an assay developed for this purpose. We present here a new method based on the enzymatic cleavage of arachidonic acid with luciferin release using human Monoacylglycerol lipase (hMAGL) followed by its reaction with a chimeric luciferase, PLG2, to produce bioluminescence. Enzymatic cleavage of the new substrate by MAGL was demonstrated, and kinetic constants Km and Vmax were determined. 6-O-arachidonoylluciferin has proved to be a highly sensitive substrate for MAGL. The bioluminescence assay (LOD 90 pM, LOQ 300 pM) is much more sensitive and should suffer fewer biological interferences in cells lysate applications than typical fluorometric methods. The assay was validated for the identification and characterization of MAGL modulators using the well-known MAGL inhibitor JZL184. The use of PLG2 displaying distinct bioluminescence color and kinetics may offer a highly desirable opportunity to extend the range of applications to cell-based assays.


Asunto(s)
Benzodioxoles/farmacología , Benzotiazoles/metabolismo , Bioensayo/métodos , Luciferasas/metabolismo , Luminiscencia , Monoacilglicerol Lipasas/metabolismo , Piperidinas/farmacología , Ansiolíticos/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Monoacilglicerol Lipasas/antagonistas & inhibidores
11.
Biomolecules ; 10(9)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917006

RESUMEN

Changes in lipid metabolism are involved in several pathological conditions, such as cancer. Among lipids, eicosanoids are potent inflammatory mediators, synthesized from polyunsaturated fatty acids (PUFAs), which coexist with other lipid-derived ones, including endocannabinoids (ECs) and N-acylethanolamides (NAEs). In this work, a bioanalytical assay for 12 PUFAs/eicosanoids and 20 ECs/NAEs in cell culture medium and human biofluids was validated over a linear range of 0.1-2.5 ng/mL. A fast pretreatment method consisting of protein precipitation with acetonitrile followed by a double step liquid-liquid extraction was developed. The final extracts were injected onto a Kinetex ultra-high-performance liquid chromatography (UHPLC) XB-C18 column with a gradient elution of 0.1% formic acid in water and methanol/acetonitrile (5:1; v/v) mobile phase. Chromatographic separation was followed by detection with a triple-quadrupole mass spectrometer operating both in positive and negative ion-mode. A full validation was carried out in a small amount of cell culture medium and then applied to osteosarcoma cell-derived products. To the best of our knowledge, this is the first lipid profiling of bone tumor cell lines (SaOS-2 and MG-63) and their secretome. Our method was also partially validated in other biological matrices, such as serum and urine, ensuring its broad applicability as a powerful tool for lipidomic translational research.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Lipidómica/métodos , Lípidos/análisis , Osteosarcoma/química , Osteosarcoma/metabolismo , Espectrometría de Masas en Tándem/métodos , Línea Celular Tumoral , Humanos , Reproducibilidad de los Resultados , Suero/química , Orina/química
12.
Chem Biol Interact ; 326: 109137, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442417

RESUMEN

In the present study eighteen inhibitors of the hydrolytic enzymes of the endocannabinoid system were investigated for antioxidant activity using lipid peroxidation (LP) method. Among the assayed compounds ten belong to carbamates with phenyl [1,1'-biphenyl]-3-ylcarbamate (6), reported for the first time, and eight are retro-amide derivatives of palmitamine. Interestingly, results indicated that most of the tested compounds have good antioxidant properties. In particular, 1,3-di([1,1'-biphenyl]-3-yl)urea (3) shows IC50 = 26 ± 6 µM comparable to ones obtained for standard antioxidants trolox and quercetin (IC50 = 22 ± 6 µM and 23 ± 6 µM, respectively). Compound 3 was investigated further by means of DFT calculations, to clarify a possible mechanism of the antioxidant action. In order to estimate the capability of 3 to act as radical scavenger the structure was optimized at B3LYP/6-311++G** level and the respective bond dissociation enthalpies were calculated. The calculations in non-polar medium predicted as favorable mechanism a donation of a hydrogen atom to the free radical and formation of N-centered radical, while in polar solvents the mechanism of free radical scavenging by SPLET dominates over HAT H-abstraction. The possible radical scavenging mechanisms of another compound with potent antioxidant properties (IC50 = 53 ± 12 µM), the retro-amide derivative of palmitamine (compound 18), was estimated computationally based on the reaction enthalpies of a model compound (structural analogue to 18). The computations indicated that the most favorable mechanisms are hydrogen atom transfer from the hydroxyl group in meta-position of the benzamide fragment in nonpolar medium, and proton transfer from the hydroxyl group in ortho-position of the benzamide fragment in polar medium.


Asunto(s)
Compuestos de Bifenilo/química , Peroxidación de Lípido/efectos de los fármacos , Urea/química , Anilidas/química , Antioxidantes/química , Benzamidas/química , Ácidos Grasos/química , Depuradores de Radicales Libres/química , Radicales Libres/química , Hidrógeno/química , Ácidos Palmíticos/química , Solventes/química
13.
Molecules ; 25(9)2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357494

RESUMEN

The use of doping in sports is a global problem that affects athletes around the world. Among the different methods developed to detect doping agents in biological samples, there are antibody-based methods that need an appropriate hapten design. Steroids with a hydroxyl group can be converted to the corresponding hemisuccinates. A novel approach to the synthesis of 17ß-O-hemisuccinate of the common doping agent stanozolol is described here. Acylation of stanozolol with methyl 4-chloro-4-oxobutyrate/4-dimethylaminopyridine, followed by mild alkaline hydrolysis with methanolic sodium hydroxide at room temperature, gave the simultaneous protection and deprotection of pyrazole-nitrogen atoms. The proposed new synthetic method allows the desired hemisuccinate derivative to be obtained in only two steps, and with a good total yield starting from stanozolol.


Asunto(s)
Doping en los Deportes/prevención & control , Estanozolol/análisis , Esteroides/análisis , Detección de Abuso de Sustancias/métodos , Succinatos/síntesis química , Acilación , Anabolizantes/análisis , Andrógenos/análisis , Cromatografía en Capa Delgada , Humanos , Espectroscopía de Resonancia Magnética , Estanozolol/química , Succinatos/análisis , Succinatos/química
14.
Cancers (Basel) ; 12(4)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260109

RESUMEN

Due to the involvement of the endocannabinoid system (ECS) in cancer onset and progression and the less studied connection between ECS and bladder cancer, here an evaluation of the ECS modifications associated with bladder cancer is reported. Urine samples were collected from healthy volunteers and patients with bladder cancer at different grades. Endocannabinoids (ECs) and N-acylethanolamides (NAEs) were quantified by HPLC-MS/MS and results normalized for creatinine content. An increase in the urine concentrations of four ECs and NAEs analyzed was observed with a statistically significant increase in the arachidonoylethanolamide (AEA) and stearoylethanoamide (SEA) associated with bladder cancer. Receiver operating characteristic curves built with AEA and SEA data allowed the selection of 160 pg/mL for SEA (area under the curve (AUC) = 0.91, Selectivity (SE) 94%, Specificity (SP) 45%) and 8 pg/mL for AEA (AUC = 0.85, SE 94%, SP 61%) as the best cut-off values. Moreover, data from bladder cancer samples at different grades were derived from The Cancer Genome Atlas, and the expressions of thirteen different components of the "endocannabinoidome" were analyzed. Statistical analysis highlights significant variations in the expression of three enzymes involved in EC and NAE turnover in bladder cancer.

15.
Molecules ; 24(20)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618977

RESUMEN

p-Cresyl sulfate is one of the bound uremic toxins whose level increases in the sera of patients with the severity of chronic kidney disease and is therefore used as a standard for clinical investigations. Our first attempts to obtain p-cresyl sulfate led exclusively to the product of sulfonation of the aromatic ring instead of sulfation on the OH moiety. Nevertheless, this initial discouraging result allowed us to handle both p-cresyl sulfate and 2-hydroxy-5-methylbenzenesulfonic acid obtained by different synthetic pathways. Interestingly, the comparison between the two isomers pointed out that the two molecules show the same fragmentation pattern and are indistinguishable by mass spectrometry. They cannot be separated on several commercially available columns. The only difference between the two compounds is a 10-fold higher ionization yield under negative ion electrospray ionization. NMR spectral studies definitely confirmed the different molecular structures. We present here an unambiguous biomimetic synthetic route for p-cresyl sulfate and the spectroscopic characterization of both the compounds by nuclear magnetic resonance and mass spectrometry.


Asunto(s)
Biomarcadores , Cresoles/metabolismo , Cardiopatías/metabolismo , Enfermedades Renales/metabolismo , Ésteres del Ácido Sulfúrico/metabolismo , Toxinas Biológicas/metabolismo , Cromatografía Liquida , Cresoles/sangre , Cresoles/química , Cardiopatías/sangre , Cardiopatías/orina , Humanos , Enfermedades Renales/sangre , Enfermedades Renales/orina , Espectroscopía de Resonancia Magnética , Estructura Molecular , Ésteres del Ácido Sulfúrico/sangre , Ésteres del Ácido Sulfúrico/química , Espectrometría de Masas en Tándem , Toxinas Biológicas/sangre , Toxinas Biológicas/química
16.
Molecules ; 24(12)2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208066

RESUMEN

Monoacylglycerol lipase (MAGL) is a serine hydrolase that has a key regulatory role in controlling the levels of 2-arachidonoylglycerol (2-AG), the main signaling molecule in the endocannabinoid system. Identification of selective modulators of MAGL enables both to provide new tools for investigating pathophysiological roles of 2-AG, and to discover new lead compounds for drug design. The development of sensitive and reliable methods is crucial to evaluate this modulatory activity. In the current study, we report readily synthesized long-wavelength putative fluorogenic substrates with different acylic side chains to find a new probe for MAGL activity. 7-Hydroxyresorufinyl octanoate proved to be the best substrate thanks to the highest rate of hydrolysis and the best Km and Vmax values. In addition, in silico evaluation of substrates interaction with the active site of MAGL confirms octanoate resorufine derivative as the molecule of choice. The well-known MAGL inhibitors URB602 and methyl arachidonylfluorophosphonate (MAFP) were used for the assay validation. The assay was highly reproducible with an overall average Z' value of 0.86. The fast, sensitive and accurate method described in this study is suitable for low-cost high-throughput screening (HTS) of MAGL modulators and is a powerful new tool for studying MAGL activity.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes , Ensayos Analíticos de Alto Rendimiento , Monoacilglicerol Lipasas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Hidrólisis , Cinética , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Monoacilglicerol Lipasas/química , Reproducibilidad de los Resultados , Relación Estructura-Actividad
18.
Molecules ; 24(5)2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30862103

RESUMEN

Olaparib, an orally active inhibitor of poly(ADP-ribose)polymerase(PARP), is the drug of choice in the treatment of gBRCA1/2+ metastatic breast cancers. Unfortunately, Olaparib is poorly soluble with low bioavailability and tumor accumulation; nano-delivery could be a good choice to overcome these disadvantages. Here, a rapid and robust HPLC-ESI⁻MS/MS method for the quantification of Olaparib in ferritin nano-carriers led to the development of cells compartments, different tissues, plasma and urines and were validated to assess the effects of nano-delivery on cell compartment distribution of the drug. This method allows the quantification of Olaparib within the linear range of 0.1⁻10ng/mL in cells culture medium and cell cytoplasm, of 0.5⁻10ng/mL in nuclei, of 0.5⁻100ng/mL in plasma and urine and of 10⁻500ng/mL in tissue samples (kidney and liver). The limit of quantification was found to be 1.54 ng/mL for liver, 2.87 ng/mL for kidney, and lower than 0.48 ng/mL for all matrices. The method has been applied to quantify Ola encapsulated in ferritin-nano-carriers during the nano-drug development. The application of the method to human BRCA-mutated cell model to quantify the Olaparib distribution after incubation of free or ferritin-encapsulated Olaparib is also reported. This sensitive method allows the quantification of low concentrations of Olaparib released from nano-carriers in different cell compartments, leading to the determination of the drug release and kinetic profile of an essential parameter to validate nano-carriers.


Asunto(s)
Cromatografía Liquida , Sistemas de Liberación de Medicamentos , Nanotecnología , Ftalazinas/administración & dosificación , Ftalazinas/farmacocinética , Piperazinas/administración & dosificación , Piperazinas/farmacocinética , Espectrometría de Masas en Tándem , Línea Celular , Estabilidad de Medicamentos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Flujo de Trabajo
19.
Artículo en Inglés | MEDLINE | ID: mdl-30465624

RESUMEN

N6-isopentenyladenosine is an anti-proliferative and pro-apoptotic atypical nucleoside for normal and tumor cells. Considering the role of angiogenesis in various diseases, we investigated the cytotoxic effect of N6-isopentenyladenosine on human microvascular endothelial cells, protagonists in angiogenesis. Our results show that N6-isopentenyladenosine induced a significant reduction of cell viability, upregulated p21 and promoted caspase-3 cleavage in a dose dependent manner leading to apoptotic cell death as detected by FACS analysis. To understand structure-function relationship of N6-isopentenyladenosine, we investigated the effect of some N6-isopentenyladenosine analogs. Our results suggest that N6-isopentenyladenosine and some of its derivatives are potentially novel angiostatic agents and might be associated with other anti-angiogenic compounds for a better outcome.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Endotelio Vascular/citología , Isopenteniladenosina/farmacología , Inhibidores de la Angiogénesis/administración & dosificación , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Células Endoteliales/efectos de los fármacos , Humanos , Interferón gamma/farmacología , Isopenteniladenosina/administración & dosificación
20.
Bioorg Med Chem ; 26(9): 2561-2572, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29678535

RESUMEN

Monoacylglycerol lipase (MAGL) has an essential role in the catabolic pathway of the endocannabinoid 2-arachidonoylglycerol, which makes it a potential target for highly specific inhibitors for the treatment of a number of diseases. We designed and synthesized a series of carbamate analogues of URB602. We evaluated their inhibitory activity toward human MAGL in vitro both in cell culture and lysates. The target compounds exhibited moderate to excellent inhibitory activity against MAGL. The most promising compound 2b showed good inhibitory activity with IC50 value of 4.5 ±â€¯0.70 µM reducing MAGL activity to 82% of controls at 10 µM compared to 66% for the parent compound URB602. Interestingly, compounds 2b and 2c induce cell death through the inhibition of MAGL. Molecular modelling approaches and docking studies, used to investigate inhibitory profiles, indicated that trifluoromethyl substitutions of the aryl group and the benzene ring present at the oxygen side of the carbamate molecule had a significant impact on the activity.


Asunto(s)
Antineoplásicos/farmacología , Carbamatos/farmacología , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Amidohidrolasas/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Sitios de Unión , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Carbamatos/síntesis química , Carbamatos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Pruebas de Enzimas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoacilglicerol Lipasas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA