Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 31(49): 495207, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32946424

RESUMEN

In this paper we report a set of experiments at the wafer level regarding field-effect transistors with a graphene monolayer channel transferred on the ferroelectric HfO2/Ge-HfO2/HfO2 three-layer structure. This kind of transistor has a switching ratio of 103 between on and off states due to the bandgap in graphene induced by the ferroelectric structure. Both top and back gates effectively control the carriers' charge flow in graphene. The transistor acts as a three-terminal memristor, termed a memtransistor, with applications in neuromorphic computation.

2.
Nanotechnology ; 30(44): 445501, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31342930

RESUMEN

Trilayer memory capacitors of control HfO2/floating gate of Ge nanoparticles in HfO2/tunnel HfO2/Si substrate deposited by magnetron sputtering and subsequently annealed are investigated for the first time for applications in radiation dosimetry. In the floating gate (FG), amorphous Ge nanoparticles (NPs) are arranged in two rows inside the HfO2 matrix. The HfO2 matrix is formed of orthorhombic/tetragonal nanocrystals (NCs). The adjacent thin films to the FG are also formed of orthorhombic/tetragonal HfO2 NCs. This phase is formed during annealing, in samples with thick control HfO2, in the presence of Ge, being induced by the stress. In the rest of the control oxide, HfO2 NCs are monoclinic. Orthorhombic HfO2 has ferroelectric properties and therefore enhances the memory window produced by charge storage in Ge NPs to above 6 V. The high sensitivity of 0.8 mV Gy-1 to α particle irradiation from a 241Am source was measured by monitoring the flatband potential during radiation exposure after electrical writing of the memory.

3.
Nanotechnology ; 30(36): 365604, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31151130

RESUMEN

SiGe nanoparticles dispersed in a dielectric matrix exhibit properties different from those of bulk and have shown great potential in devices for application in advanced optoelectronics. Annealing is a common fabrication step used to increase crystallinity and to form nanoparticles in such a system. A frequent downside of such annealing treatment is the formation of insulating SiO2 layer at the matrix/SiGe interface, degrading the optical properties of the structure. An annealing process that could bypass this downside would therefore be of great interest. In this work, a short-time furnace annealing of a SiGe/TiO2 system is applied to obtain SiGe nanoparticles without formation of the undesired SiO2 layer between the dielectric matrix (TiO2) and SiGe. The structures were prepared by depositing alternate layers of TiO2 and SiGe films, using direct-current magnetron sputtering technique. A wide range spectral response with a response-threshold up to ∼1300 nm was obtained, accompanied with an increase in photo-response of more than two-orders of magnitude. Scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy and grazing incidence x-ray diffraction were used to analyze the morphological changes in respective structures. Photoconductive properties were studied by measuring photocurrent spectra using applied dc-voltages at various temperatures.

4.
Sci Rep ; 8(1): 4898, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29559710

RESUMEN

Si and Ge nanocrystals in oxides are of a large interest for photo-effect applications due to the fine-tuning of the optical bandgap by quantum confinement in nanocrystals. In this work, dense Ge nanocrystals suitable for enhanced photoconduction were fabricated from 60% Ge in TiO2 amorphous layers by low temperature rapid thermal annealing at 550 °C. An exponential increase of the photocurrent with the applied voltage was observed in coplanar structure of Ge nanocrystals composite films deposited on oxidized Si wafers. The behaviour was explained by field effect control of the Fermi level at the Ge nanocrystals-TiO2 layer/substrate interfaces. The blue-shift of the absorption gap from bulk Ge value to 1.14 eV was evidenced in both photocurrent spectra and optical reflection-transmission experiments, in good agreement with quantum confinement induced bandgap broadening in Ge nanocrystal with sizes of about 5 nm as found from HRTEM and XRD investigations. A nonmonotonic spectral dependence of the refractive index is associated to the Ge nanocrystals formation. The nanocrystal morphology is also in good agreement with the Coulomb gap hopping mechanism of T-1/2 -type explaining the temperature dependence of the dark conduction.

5.
Nanotechnology ; 28(17): 175707, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28291015

RESUMEN

High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2/floating gate of single layer of Ge QDs in HfO 2/tunnel HfO 2/p-Si wafers. Both Ge and HfO2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 1015 m-2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO2 NCs boundaries, while another part of the Ge atoms is present inside the HfO2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO2, distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA