Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 152: 105300, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582224

RESUMEN

Ganglioside-induced differentiation associated protein 1 (GDAP1) gene encodes a protein of the mitochondrial outer membrane and of the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs) and lysosomes. Since mutations in GDAP1 cause Charcot-Marie-Tooth, an inherited motor and sensory neuropathy, its function is essential for peripheral nerve physiology. Our previous studies showed structural and functional defects in mitochondria and their contacts when GDAP1 is depleted. Nevertheless, the underlying axonal pathophysiological events remain unclear. Here, we have used embryonic motor neurons (eMNs) cultures from Gdap1 knockout (Gdap1-/-) mice to investigate in vivo mitochondria and calcium homeostasis in the axons. We imaged mitochondrial axonal transport and we found a defective pattern in the Gdap1-/- eMNs. We also detected pathological and functional mitochondria membrane abnormalities with a drop in ATP production and a deteriorated bioenergetic status. Another consequence of the loss of GDAP1 in the soma and axons of eMNs was the in vivo increase calcium levels in both basal conditions and during recovery after neuronal stimulation with glutamate. Further, we found that glutamate-stimulation of respiration was lower in Gdap1-/- eMNs showing that the basal bioenergetics failure jeopardizes a full respiratory response and prevents a rapid return of calcium to basal levels. Together, our results demonstrate that the loss of GDAP1 critically compromises the morphology and function of mitochondria and its relationship with calcium homeostasis in the soma and axons, offering important insight into the cellular mechanisms associated with axonal degeneration of GDAP1-related CMT neuropathies and the relevance that axon length may have.


Asunto(s)
Calcio/metabolismo , Enfermedad de Charcot-Marie-Tooth , Mitocondrias/patología , Neuronas Motoras/patología , Proteínas del Tejido Nervioso/deficiencia , Animales , Transporte Axonal/fisiología , Axones/patología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología
2.
Hum Mol Genet ; 29(22): 3589-3605, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33372681

RESUMEN

Mutations in the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. GDAP1 is an atypical glutathione S-transferase (GST) of the outer mitochondrial membrane and the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs). Here, we investigate the role of this GST in the autophagic flux and the membrane contact sites (MCSs) between mitochondria and lysosomes in the cellular pathophysiology of GDAP1 deficiency. We demonstrate that GDAP1 participates in basal autophagy and that its depletion affects LC3 and PI3P biology in autophagosome biogenesis and membrane trafficking from MAMs. GDAP1 also contributes to the maturation of lysosome by interacting with PYKfyve kinase, a pH-dependent master lysosomal regulator. GDAP1 deficiency causes giant lysosomes with hydrolytic activity, a delay in the autophagic lysosome reformation, and TFEB activation. Notably, we found that GDAP1 interacts with LAMP-1, which supports that GDAP1-LAMP-1 is a new tethering pair of mitochondria and lysosome membrane contacts. We observed mitochondria-lysosome MCSs in soma and axons of cultured mouse embryonic motor neurons and human neuroblastoma cells. GDAP1 deficiency reduces the MCSs between these organelles, causes mitochondrial network abnormalities, and decreases levels of cellular glutathione (GSH). The supply of GSH-MEE suffices to rescue the lysosome membranes and the defects of the mitochondrial network, but not the interorganelle MCSs nor early autophagic events. Overall, we show that GDAP1 enables the proper function of mitochondrial MCSs in both degradative and nondegradative pathways, which could explain primary insults in GDAP1-related CMT pathophysiology, and highlights new redox-sensitive targets in axonopathies where mitochondria and lysosomes are involved.


Asunto(s)
Autofagia/genética , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Membrana de los Lisosomas/genética , Membranas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Axones/metabolismo , Axones/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Calcio/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Retículo Endoplásmico/genética , Glutatión/genética , Glutatión/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Neuronas/metabolismo , Neuronas/patología , Oxidación-Reducción
3.
Exp Neurol ; 320: 113004, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31271761

RESUMEN

Mutations in the GDAP1 mitochondrial outer membrane gene cause Charcot-Marie-Tooth (CMT) neuropathy. Reduction or absence of GDAP1 has been associated with abnormal changes in the mitochondrial morphology and dynamics, oxidative stress and changes in calcium homeostasis. Neuroinflammation has been described in rodent models of genetic demyelinating CMT neuropathies but not in CMT primarily associated with axonopathy. Inflammatory processes have also been related to mitochondrial changes and oxidative stress in central neurodegenerative disorders. Here we investigated the presence of neuroinflammation in the axonal neuropathy of the Gdap1-/- mice. We showed by transcriptome profile of spinal cord and the in vivo detection of activated phagocytes that the absence of GDAP1 is associated with upregulation of inflammatory pathways. We observed reactive gliosis in spinal cord with increase of the astroglia markers GFAP and S100B, and the microglia marker IBA1. Additionally, we found significant increase of inflammatory mediators such as TNF-α and pERK, and C1qa and C1qb proteins of the complement system. Importantly, we observed an increased expression of CD206 and CD86 as M2 and M1 microglia and macrophage response markers, respectively, in Gdap1-/- mice. These inflammatory changes were also associated with abnormal molecular changes in synapses. In summary, we demonstrate that inflammation in spinal cord and sciatic nerve, but not in brain and cerebellum, is part of the pathophysiology of axonal GDAP1-related CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/patología , Inflamación/patología , Proteínas del Tejido Nervioso/deficiencia , Nervio Ciático/patología , Médula Espinal/patología , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/inmunología , Inflamación/inmunología , Ratones , Ratones Noqueados , Nervio Ciático/inmunología , Médula Espinal/inmunología
4.
PLoS Genet ; 11(4): e1005115, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25860513

RESUMEN

Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.


Asunto(s)
Axones/metabolismo , Señalización del Calcio , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Axones/patología , Axones/fisiología , Canales de Calcio/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Citoesqueleto/metabolismo , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Proteínas del Tejido Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...