Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732047

RESUMEN

Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions. In this study, we examined the permeability of the BBB in the Ndufs4-/- mouse model of Leigh syndrome (LS). Our results indicated that the structural and functional integrity of the BBB was preserved in this severe model of mitochondrial disease. Our findings suggests that pharmacological or gene therapy strategies targeting the central nervous system in this mouse model and possibly other models of mitochondrial dysfunction require the use of specific tools to bypass the BBB. In addition, they raise the need for testing the integrity of the BBB in complementary in vivo models.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón , Enfermedad de Leigh , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/genética
2.
Bull Cancer ; 2024 Mar 13.
Artículo en Francés | MEDLINE | ID: mdl-38485627

RESUMEN

Changing practices and the limited use of cord blood units as a source of cells for allogeneic hematopoietic stem cell transplants (HSC) led us to reconsider the recommendations established in 2011 and 2012, and to propose an update incorporating recent bibliographic data. If HLA compatibility was until now established at low resolution for HLA-A and B loci, and at high resolution for HLA-DRB1, the recent papers are converging towards an increase in the level of resolution, making way for a compatibility now defined in high resolution for all the considered loci, and the inclusion of the HLA-C locus, in order to establish a level of HLA compatibility on 8 alleles (HLA-A, B, C and DRB1). The CD34+ dose is a determining factor in hematopoietic reconstitution but it is not correlated with the total nucleated cells content. This is why we recommend taking these two data into account when choosing a cord blood unit. The recommendations established by our group are presented as a flow chart taking into account the characteristics of the underlying pathology (malignant or non-malignant), the cell dose and the HLA compatibility criteria, as well as criteria linked to the banks in which units are stored.

3.
Inflamm Bowel Dis ; 29(7): 1024-1037, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36662167

RESUMEN

BACKGROUND: There is an unmet medical need for biomarkers that capture host and environmental contributions in inflammatory bowel diseases (IBDs). This study aimed at testing the potential of circulating lipids as disease classifiers given their major roles in inflammation. METHODS: We applied a previously validated comprehensive high-resolution liquid chromatography-mass spectrometry-based untargeted lipidomic workflow covering 25 lipid subclasses to serum samples from 100 Crohn's disease (CD) patients and 100 matched control subjects. Findings were replicated and expanded in another 200 CD patients and 200 control subjects. Key metabolites were tested for associations with disease behavior and location, and classification models were built and validated. Their association with disease activity was tested using an independent cohort of 42 CD patients. RESULTS: We identified >70 metabolites with strong association (P < 1 × 10-4, q < 5 × 10-4) to CD. Highly performing classification models (area under the curve > 0.84-0.97) could be built with as few as 5 to 9 different metabolites, representing 6 major correlated lipid clusters. These classifiers included a phosphatidylethanolamine ether (O-16:0/20:4), a sphingomyelin (d18:1/21:0) and a cholesterol ester (14:1), a very long-chain dicarboxylic acid [28:1(OH)] and sitosterol sulfate. These classifiers and correlated lipids indicate a dysregulated metabolism in host cells, notably in peroxisomes, as well as dysbiosis, oxidative stress, compromised inflammation resolution, or intestinal membrane integrity. A subset of these were associated with disease behavior or location. CONCLUSIONS: Untargeted lipidomic analyses uncovered perturbations in the circulating human CD lipidome, likely resulting from multiple pathogenic mechanisms. Models using as few as 5 biomarkers had strong disease classifier characteristics, supporting their potential use in diagnosis or prognosis.


This study reports a comprehensive untargeted lipidomic analysis of 600 serum samples from patients with Crohn's disease and matched control subjects, identified and replicated ~70 metabolites associated with Crohn's disease, and developed highly performing classification models (area under the curve > 0.84-0.97) with as few as 5 metabolites.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/patología , Lipidómica , Biomarcadores , Lípidos , Inflamación
4.
Talanta ; 252: 123839, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027619

RESUMEN

Malaria elimination is a major goal to be reached in the next decade. Significant progress were made in the past, and the prevalence decreased in many areas while the positive trend stalled in the last years. The exact number of asymptomatic carriers of Plasmodium parasites is unknown since this population is not detected by conventional diagnosis methods and participate in the maintenance of transmission. Molecular methods to detect low parasitemia are not available at point-of-care in low-income countries of malaria endemic areas. Adaptation of molecular methods such as loop-mediated isothermal amplification of DNA may provide effective tools but it required simplification of DNA detection. Square waves voltammetry, easily imbedded in small device such as cell phone, was largely described for DNA detection but support for reaction was an issue to address. Here we used an efficient functionalization method of paper-based material to facilitate the interactions between isothermal amplification product and methylene blue for easy-to-use DNA detection. The proof-of-concept of qualitative detection of very low parasitemia from malaria infected patients using newly chemically treated paper for square waves voltammetry was obtained with a sensitivity and specificity of 100% and a limit-of-detection of 0.1 parasite. µL-1 corresponding to a parasitemia of 0.000002%.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Parasitemia/diagnóstico , Plasmodium falciparum/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Malaria/diagnóstico , Sensibilidad y Especificidad , ADN/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología
5.
Mar Drugs ; 19(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34677445

RESUMEN

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE "modulator" capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.


Asunto(s)
Antineoplásicos/farmacología , Carragenina/farmacología , Línea Celular Tumoral/efectos de los fármacos , Glucuronidasa/metabolismo , Rhodophyta , Animales , Antineoplásicos/química , Organismos Acuáticos , Neoplasias de la Mama , Carragenina/química , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo
6.
Biochimie ; 182: 228-237, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33535124

RESUMEN

Thermus thermophilus laccase belongs to the sub-class of multicopper oxidases that is activated by the extra binding of copper to a methionine-rich domain allowing an electron pathway from the substrate to the conventional first electron acceptor, the T1 Cu. In this work, two key amino acid residues in the 1st and 2nd coordination spheres of T1 Cu are mutated in view of tuning their redox potential and investigating their influence on copper-related activity. Evolution of the kinetic parameters after copper addition highlights that both mutations play a key role influencing the enzymatic activity in distinct unexpected ways. These results clearly indicate that the methionine rich domain is not the only actor in the cuprous oxidase activity of CueO-like enzymes.


Asunto(s)
Proteínas Bacterianas/química , Cobre/química , Lacasa/química , Mutación , Thermus thermophilus/enzimología , Proteínas Bacterianas/genética , Lacasa/genética
7.
Dis Model Mech ; 13(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32303571

RESUMEN

The balance within phospholipids (PLs) between saturated fatty acids and monounsaturated or polyunsaturated fatty acids is known to regulate the biophysical properties of cellular membranes. As a consequence, in many cell types, perturbing this balance alters crucial cellular processes, such as vesicular budding and the trafficking/function of membrane-anchored proteins. The worldwide spread of the Western diet, which is highly enriched in saturated fats, has been clearly correlated with the emergence of a complex syndrome known as metabolic syndrome (MetS). MetS is defined as a cluster of risk factors for cardiovascular diseases, type 2 diabetes and hepatic steatosis; however, no clear correlations have been established between diet-induced fatty acid redistribution within cellular PLs and the severity/chronology of the symptoms associated with MetS or the function of the targeted organs. To address this issue, in this study we analyzed PL remodeling in rats exposed to a high-fat/high-fructose diet (HFHF) over a 15-week period. PL remodeling was analyzed in several organs, including known MetS targets. We show that fatty acids from the diet can redistribute within PLs in a very selective manner, with phosphatidylcholine being the preferred sink for this redistribution. Moreover, in the HFHF rat model, most organs are protected from this redistribution, at least during the early onset of MetS, at the expense of the liver and skeletal muscles. Interestingly, such a redistribution correlates with clear-cut alterations in the function of these organs.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ácidos Grasos/metabolismo , Síndrome Metabólico/metabolismo , Fosfolípidos/metabolismo , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Azúcares de la Dieta , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/patología , Fructosa , Lipidómica , Hígado/metabolismo , Hígado/patología , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miocardio/metabolismo , Miocardio/patología , Ratas Wistar , Factores de Tiempo
8.
Behav Brain Res ; 378: 112256, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31614187

RESUMEN

Zebrafish are becoming a species of choice in psychopharmacology, laying a promising path to refined pharmacological manipulations and high-throughput behavioral phenotyping. The field of robotics has the potential to accelerate progress along this path, by offering unprecedented means for the design and development of accurate and reliable experimental stimuli. In this work, we demonstrate, for the first time, the integration of robotic predators in place conditioning experiments. We hypothesized zebrafish to be capable of forming a spatial association under a simulated predation risk. We repeatedly exposed experimental subjects to a robotic heron impacting the water surface and then evaluated their spatial avoidance within the experimental tank in a subsequent predator-free test session. To pharmacologically validate the paradigm, we tested zebrafish in drug-free conditions (control groups) or in response to three different concentrations of citalopram (30, 50, and 100 mg/L) and ethanol (0.25, 0.50, and 1.00%). Experimental data indicate that, when tested in the absence of the conditioning stimulus, zebrafish displayed a marked preference for the bottom of the test tank, that is, the farthest location from the simulated attacks by the robotic heron. This conditioned geotaxis was reduced by the administration of citalopram in a linear dose-response curve and ethanol at the low concentration. Ultimately, our data demonstrate that robotic stimuli may represent valid conditioning tools and, thereby, aid the field of zebrafish psychopharmacology.


Asunto(s)
Asociación , Reacción de Prevención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Citalopram/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Etanol/farmacología , Miedo/efectos de los fármacos , Robótica , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Conducta Espacial/efectos de los fármacos , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Citalopram/administración & dosificación , Diseño de Equipo , Etanol/administración & dosificación , Femenino , Masculino , Conducta Predatoria/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Pez Cebra
9.
J Am Chem Soc ; 142(3): 1394-1405, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31865707

RESUMEN

Multicopper oxidases (MCOs) catalyze the oxidation of a variety of substrates while reducing oxygen into water through four copper atoms. As an additional feature, some MCOs display an enhanced activity in solution in the presence of Cu2+. This is the case of the hyperthermophilic laccase HB27 from Thermus thermophilus, the physiologic role of which is unknown. As a particular feature, this enzyme presents a methionine rich domain proposed to be involved in copper interaction. In this work, laccase from T. thermophilus was produced in E. coli, and the effect of Cu2+ on its electroactivity at carbon nanotube modified electrodes was investigated. Direct O2 electroreduction is strongly dictated by carbon nanotube surface chemistry in accordance with the enzyme dipole moment. In the presence of Cu2+, an additional low potential cathodic wave occurs, which was never described earlier. Analysis of this wave as a function of Cu2+ availability allows us to attribute this wave to a cuprous oxidase activity displayed by the laccase and induced by copper binding close to the Cu T1 center. A mutant lacking the methionine-rich hairpin domain characteristic of this laccase conserves its copper activity suggesting a different site of copper binding. This study provides new insight into the copper effect in methionine rich MCOs and highlights the utility of the electrochemical method to investigate cuprous oxidase activity and to understand the physiological role of these MCOs.


Asunto(s)
Cobre/metabolismo , Electrodos , Lacasa/metabolismo , Oxígeno/metabolismo , Thermus thermophilus/metabolismo , Oxidación-Reducción
10.
PeerJ ; 7: e7893, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31637136

RESUMEN

Zebrafish (Danio rerio) have recently emerged as a valuable laboratory species in the field of behavioral pharmacology, where they afford rapid and precise high-throughput drug screening. Although the behavioral repertoire of this species manifests along three-dimensional (3D), most of the efforts in behavioral pharmacology rely on two-dimensional (2D) projections acquired from a single overhead or front camera. We recently showed that, compared to a 3D scoring approach, 2D analyses could lead to inaccurate claims regarding individual and social behavior of drug-free experimental subjects. Here, we examined whether this conclusion extended to the field of behavioral pharmacology by phenotyping adult zebrafish, acutely exposed to citalopram (30, 50, and 100 mg/L) or ethanol (0.25%, 0.50%, and 1.00%), in the novel tank diving test over a 6-min experimental session. We observed that both compounds modulated the time course of general locomotion and anxiety-related profiles, the latter being represented by specific behaviors (erratic movements and freezing) and avoidance of anxiety-eliciting areas of the test tank (top half and distance from the side walls). We observed that 2D projections of 3D trajectories (ground truth data) may introduce a source of unwanted variation in zebrafish behavioral phenotyping. Predictably, both 2D views underestimate absolute levels of general locomotion. Additionally, while data obtained from a camera positioned on top of the experimental tank are similar to those obtained from a 3D reconstruction, 2D front view data yield false negative findings.

11.
J Am Chem Soc ; 141(28): 11093-11102, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31274287

RESUMEN

Cytochrome c oxidases (CcOs) are the terminal enzymes in energy-converting chains of microorganisms, where they reduce oxygen into water. Their affinity for O2 makes them attractive biocatalysts for technological devices in which O2 concentration is limited, but the high overpotentials they display on electrodes severely limit their applicative use. Here, the CcO of the acidophilic bacterium Acidithiobacillus ferrooxidans is studied on various carbon materials by direct protein electrochemistry and mediated one with redox mediators either diffusing or co-immobilized at the electrode surface. The entrapment of the CcO in a network of hydrophobic carbon nanofibers permits a direct electrochemical communication between the enzyme and the electrode. We demonstrate that the CcO displays a µM affinity for O2 and reduces O2 at exceptionally high electrode potentials in the range of +700 to +540 mV vs NHE over a pH range of 4-6. The kinetics of interactions between the enzyme and its physiological partners are fully quantified. Based on these results, an electron transfer pathway allowing O2 reduction in the acidic metabolic chain is proposed.


Asunto(s)
Acidithiobacillus/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Oxígeno/metabolismo , Acidithiobacillus/metabolismo , Complejo IV de Transporte de Electrones/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Oxígeno/química
12.
ISME J ; 13(8): 2094-2106, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31024153

RESUMEN

Most aquatic photoautotrophs depend on CO2-concentrating mechanisms (CCMs) to maintain productivity at ambient concentrations of CO2, and carbonic anhydrase (CA) plays a key role in these processes. Here we present different lines of evidence showing that the protein LCIP63, identified in the marine diatom Thalassiosira pseudonana, is a CA. However, sequence analysis showed that it has a low identity with any known CA and therefore belongs to a new subclass that we designate as iota-CA. Moreover, LCIP63 unusually prefers Mn2+ to Zn2+ as a cofactor, which is potentially of ecological relevance since Mn2+ is more abundant than Zn2+ in the ocean. LCIP63 is located in the chloroplast and only expressed at low concentrations of CO2. When overexpressed using biolistic transformation, the rate of photosynthesis at limiting concentrations of dissolved inorganic carbon increased, confirming its role in the CCM. LCIP63 homologs are present in the five other sequenced diatoms and in other algae, bacteria, and archaea. Thus LCIP63 is phylogenetically widespread but overlooked. Analysis of the Tara Oceans database confirmed this and showed that LCIP63 is widely distributed in marine environments and is therefore likely to play an important role in global biogeochemical carbon cycling.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Anhidrasas Carbónicas/genética , Diatomeas/enzimología , Fitoplancton/enzimología , Secuencia de Aminoácidos , Anhidrasas Carbónicas/metabolismo , Cloroplastos/enzimología , Cloroplastos/ultraestructura , Coenzimas , Bases de Datos de Ácidos Nucleicos , Diatomeas/genética , Diatomeas/ultraestructura , Geografía , Microscopía Electrónica de Transmisión , Océanos y Mares , Fotosíntesis , Filogenia , Fitoplancton/genética , Fitoplancton/ultraestructura , Alineación de Secuencia
13.
Front Robot AI ; 6: 71, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33501086

RESUMEN

Social learning is ubiquitous across the animal kingdom, where animals learn from group members about predators, foraging strategies, and so on. Despite its prevalence and adaptive benefits, our understanding of social learning is far from complete. Here, we study observational learning in zebrafish, a popular animal model in neuroscience. Toward fine control of experimental variables and high consistency across trials, we developed a novel robotics-based experimental test paradigm, in which a robotic replica demonstrated to live subjects the correct door to join a group of conspecifics. We performed two experimental conditions. In the individual training condition, subjects learned the correct door without the replica. In the social training condition, subjects observed the replica approaching both the incorrect door, to no effect, and the correct door, which would open after spending enough time close to it. During these observations, subjects could not actively follow the replica. Zebrafish increased their preference for the correct door over the course of 20 training sessions, but we failed to identify evidence of social learning, whereby we did not register significant differences in performance between the individual and social training conditions. These results suggest that zebrafish may not be able to learn a route by observation, although more research comparing robots to live demonstrators is needed to substantiate this claim.

14.
Zebrafish ; 15(5): 433-444, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30070967

RESUMEN

One commonly used method to preserve individual identity in the study of social behavior of zebrafish is through silicone-based visible implant elastomers (VIEs), which represent a safe and durable tagging procedure. While the effects of VIE tagging on welfare and general health have been addressed in detail, whether this procedure influences social behavior remains unclear. In this study, we compared individual and group behaviors exhibited by shoals composed of three individuals: two nontagged and one (focal subject) that was either nontagged (control condition) or sham-, purple-, blue-, or yellow tagged. Traditional behavioral parameters of activity, shoaling, and schooling (speed, polarization, and interindividual distances), along with an information-theoretic measure of social interaction (transfer entropy), were used to study the effect of tagging. Our findings indicate that tagging procedure per se significantly increased individual speed of the tagged subjects and of the group. The tagging procedure also altered the level of interaction between individuals, measured by transfer entropy. Conversely, tagging procedure did not influence shoaling and schooling tendencies. These findings suggest that VIE tagging may elicit some level of stress, which may affect some behavioral responses more than others. We recommend use of alternative methods such as multitracking systems when possible.


Asunto(s)
Conducta Animal/fisiología , Elastómeros , Conducta Social , Pez Cebra/fisiología , Animales , Silicio/química
15.
Bioelectrochemistry ; 124: 185-194, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30086423

RESUMEN

An electroactive artificial biofilm has been optimized for the cathodic reduction of fumarate by Shewanella oneidensis. The system is based on the self-assembly of multi-walled carbon nanotubes with bacterial cells in the presence of a c-type cytochrome. The aggregates are then deposited on an electrode to form the electroactive artificial biofilm. Six c-type cytochromes have been studied, from bovine heart or Desulfuromonas and Desulfuvibrio strains. The isoelectric point of the cytochrome controls the self-assembly process that occurs only with positively-charged cytochromes. The redox potential of the cytochrome is critical for electron transfer reactions with membrane cytochromes of the Mtr pathway. Optimal results have been obtained with c3 from Desulfovibrio vulgaris Hildenborough having an isoelectric point of 10.2 and redox potentials of the four hemes ranging between -290 and -375 mV vs SHE. A current density of 170 µA cm-2 could be achieved in the presence of 50 mM fumarate. The stability of the electrochemical response was evaluated, showing a regular decrease of the current within 13 h, possibly due to the inactivation or leaching of loosely-bound cytochromes from the biofilm.


Asunto(s)
Biopelículas , Citocromos c/metabolismo , Desulfovibrio vulgaris/enzimología , Electrodos , Catálisis , Citocromos c/química , Desulfovibrio vulgaris/metabolismo , Transporte de Electrón , Fumaratos/química , Punto Isoeléctrico , Oxidación-Reducción , Electricidad Estática , Ácido Succínico/química
16.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3069-3084, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29960042

RESUMEN

Maintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organelle-based processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i. e. Cystic Fibrosis (CF) individuals and Smokers, display a characteristic lipointoxication signature, with excessive amounts of saturated PLs. Reconstitution of this signature in cellulo and in silico revealed that such an imbalance results in altered membrane properties and in a dramatic disorganization of the intracellular network of bronchial epithelial cells, in a process which can account for several OPD traits. Such features include Endoplasmic Reticulum-stress, constitutive IL8 secretion, bronchoconstriction and, ultimately, epithelial cell death by apoptosis. We also demonstrate that a recently-identified lipid-like molecule, which has been shown to behave as a "membrane-reshaper", counters all the lipointoxication hallmarks tested. Altogether, these insights highlight the modulation of membrane properties as a potential new strategy to heal and prevent highly detrimental symptoms associated with OPDs.


Asunto(s)
Membrana Celular/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Ácidos Grasos/metabolismo , Manitol/análogos & derivados , Ácidos Oléicos/farmacología , Fosfolípidos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Adulto , Anciano , Bronquios/citología , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/patología , Simulación por Computador , Fibrosis Quística/patología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ácidos Grasos/química , Femenino , Humanos , Masculino , Manitol/farmacología , Manitol/uso terapéutico , Persona de Mediana Edad , Simulación de Dinámica Molecular , Ácidos Oléicos/uso terapéutico , Fosfolípidos/química , Cultivo Primario de Células , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/citología
17.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28717027

RESUMEN

In Plantae, the Calvin-Benson-Bassham (CBB) cycle is highly regulated and most of its enzymes have been thoroughly studied. Since diatoms arose as a result of secondary endosymbiosis with one or more Plantae ancestors, their precise evolutionary history is enigmatic and complex resulting in biochemical variations on the original CBB cycle theme. The Rubisco Michaelis constant for CO2 is higher in diatoms than land plants and the nuclear-encoded Rubisco activase in Plantae is replaced by an analogous chloroplast-encoded CbbX (Calvin-Benson-Bassham protein X) in diatoms. In the CBB cycle reduction phase, phosphoglycerate kinase in diatoms is redox-regulated and similar to that in red algae; however, glyceraldehyde phosphate dehydrogenase (GAPDH) is not redox-regulated, unlike in Plantae. The phosphoribulokinase (PRK)-GAPDH-CP12 complex found in many photosynthetic organisms has not yet been found in diatoms, but a ferredoxin-NADP reductase (FNR)-GAPDH-CP12 complex has been found in one species. In the CBB cycle regeneration phase, sedoheptulose 1,7-bisphosphatase and PRK are not redox-regulated in diatoms, unlike in Plantae. Regulation at the transcriptional level seems to be important in diatoms. CBB cycle enzyme properties appear to be variable among diatoms, but this view relies on results from a few model species: a greater range of diatoms need to be studied to test this.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Asunto(s)
Evolución Biológica , Diatomeas/metabolismo , Fotosíntesis , Evolución Molecular
18.
J Exp Bot ; 68(14): 3925-3935, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369472

RESUMEN

The presence of CO2-concentrating mechanisms (CCMs) is believed to be one of the characteristics that allows diatoms to thrive in many environments and to be major contributors to global productivity. Here, the type of CCM and the responses to variable CO2 concentration were studied in marine and freshwater diatoms. At 400 ppm, there was a large diversity in physiological and biochemical mechanisms among the species. While Phaeodactylum tricornutum mainly used HCO3-, Thalassiosira pseudonana mainly used CO2. Carbonic anhydrase was an important component of the CCM in all species and C4 metabolism was absent, even with T. weissflogii. For all species, at 20 000 ppm, the affinity for dissolved inorganic carbon was lower than at 400 ppm CO2 and the reliance on CO2 was higher. Despite the difference in availability of inorganic carbon in marine and fresh waters, there were only small differences in CCMs between species from the two environments, and Navicula pelliculosa behaved similarly when grown in the two environments. The results suggest that species-specific differences are great, and more important than environmental differences in determining the nature and effectiveness of the CCM in diatoms.


Asunto(s)
Dióxido de Carbono/metabolismo , Diatomeas/metabolismo , Fotosíntesis , Ambiente , Agua Dulce , Agua de Mar , Especificidad de la Especie
19.
Environ Sci Technol ; 51(9): 5172-5181, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28345896

RESUMEN

Polyethylene (PE), one of the most prominent synthetic polymers used worldwide, is very poorly biodegradable in the natural environment. Consequently, PE represents by itself more than half of all plastic wastes. PE biodegradation is achieved through the combination of abiotic and biotic processes. Several microorganisms have been shown to grow on the surface of PE materials, among which are the species of the Rhodococcus genus, suggesting a potent ability of these microorganisms to use, at least partly, PE as a potent carbon source. However, most of them, if not all, fail to induce a clear-cut degradation of PE samples, showing that bottlenecks to reach optimal biodegradation clearly exist. To identify the pathways involved in PE consumption, we used in the present study a combination of RNA-sequencing and lipidomic strategies. We show that short-term exposure to various forms of PE, displaying different molecular weight distributions and oxidation levels, lead to an increase in the expression of 158 genes in a Rhodococcus representative, R. ruber. Interestingly, one of the most up-regulated pathways is related to alkane degradation and ß-oxidation of fatty acids. This approach also allowed us to identify metabolic limiting steps, which could be fruitfully targeted for optimized PE consumption by R. ruber.


Asunto(s)
Polietileno/metabolismo , Rhodococcus/metabolismo , Secuencia de Bases , Biodegradación Ambiental , Oxidación-Reducción
20.
Sci Rep ; 7: 42333, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181560

RESUMEN

The concentration of CO2 in many aquatic systems is variable, often lower than the KM of the primary carboxylating enzyme Rubisco, and in order to photosynthesize efficiently, many algae operate a facultative CO2 concentrating mechanism (CCM). Here we measured the responses of a marine diatom, Thalassiosira pseudonana, to high and low concentrations of CO2 at the level of transcripts, proteins and enzyme activity. Low CO2 caused many metabolic pathways to be remodeled. Carbon acquisition enzymes, primarily carbonic anhydrase, stress, degradation and signaling proteins were more abundant while proteins associated with nitrogen metabolism, energy production and chaperones were less abundant. A protein with similarities to the Ca2+/ calmodulin dependent protein kinase II_association domain, having a chloroplast targeting sequence, was only present at low CO2. This protein might be a specific response to CO2 limitation since a previous study showed that other stresses caused its reduction. The protein sequence was found in other marine diatoms and may play an important role in their response to low CO2 concentration.


Asunto(s)
Organismos Acuáticos/metabolismo , Dióxido de Carbono/farmacología , Diatomeas/metabolismo , Proteómica/métodos , Secuencia de Aminoácidos , Organismos Acuáticos/citología , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/genética , Diatomeas/citología , Diatomeas/enzimología , Diatomeas/genética , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica/efectos de los fármacos , Genoma , Modelos Biológicos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...