Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prostaglandins Other Lipid Mediat ; 174: 106871, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992854

RESUMEN

This mini-review addresses lipoxygenases and receptors for leukotrienes in hematological malignancies. Potential novel biomarkers and drug targets in leukemia and B-cell lymphoma are discussed.

2.
Prostaglandins Other Lipid Mediat ; 156: 106575, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34116165

RESUMEN

Human B-lymphocytes express 5-lipoxygenase (5-LOX) and 5-LOX activating protein (FLAP) and can convert arachidonic acid to leukotriene B4. Mantle cell lymphoma (MCL) cells contain similar amounts of 5-LOX as human neutrophils but the function and mechanism of activation of 5-LOX in MCL cells, and in normal B-lymphocytes, are unclear. Here we show that the intrinsic 5-LOX pathway in the MCL cell line JeKo-1 has an essential role in migration and adherence of the cells, which are important pathophysiological characteristics of B-cell lymphoma. Incubation of JeKo-1 with the FLAP inhibitor GSK2190915 or the 5-LOX inhibitor zileuton, at a concentration below 1 µM, prior to stimulation with the chemotactic agent CXCL12, led to a significant reduction of migration. CRISPR/Cas9 mediated deletion of ALOX5 gene in JeKo-1 cells also led to a significantly decreased migration of the cells. Furthermore, 5-LOX and FLAP inhibitors markedly decreased the adherence of JeKo-1 cells to stromal cells. In comparison, these drugs had a similar effect on adherence of JeKo-1 cells as the Bruton tyrosine kinase inhibitor ibrutinib, which has a proven anti-tumour effect. These results indicate that inhibition of 5-LOX may be a novel treatment for MCL and certain other B-cell lymphomas.


Asunto(s)
Linfoma de Células del Manto
3.
Artículo en Inglés | MEDLINE | ID: mdl-33450390

RESUMEN

15-hydroxyeicosatetraenoic acid (15-HETE) is an arachidonic acid derived lipid mediator which can originate both from 15-lipoxygenase (15-LOX) activity and cyclooxygenase (COX) activity. The enzymatic source determines the enantiomeric profile of the 15-HETE formed. 15-HETE is the most abundant arachidonic acid metabolite in the human lung and has been suggested to influence the pathophysiology of asthma. Mast cells are central effectors in asthma, but there are contradictory reports on whether 15-HETE originates from 15-LOX or COX in human mast cells. This prompted the current study where the pathway of 15-HETE biosynthesis was examined in three human mast cell models; the cell line LAD2, cord blood derived mast cells (CBMC) and tissue isolated human lung mast cells (HLMC). Levels and enantiomeric profiles of 15-HETE and levels of the downstream metabolite 15-KETE, were analyzed by UPLC-MS/MS after stimulation with anti-IgE or calcium ionophore A23187 in the presence and absence of inhibitors of COX isoenzymes. We found that 15-HETE was produced by COX-1 in human mast cells under these experimental conditions. Unexpectedly, chiral analysis showed that the 15(R) isomer was predominant and gradually accumulated, whereas the 15(S) isomer was metabolized by the 15-hydroxyprostaglandin dehydrogenase. We conclude that during physiological conditions, i.e., without addition of exogenous arachidonic acid, both enantiomers of 15-HETE are produced by COX-1 in human mast cells but that the 15(S) isomer is selectively depleted by undergoing further metabolism. The study highlights that 15-HETE cannot be used as an indicator of 15-LOX activity for cellular studies, unless chirality and sensitivity to pharmacologic inhibition is determined.


Asunto(s)
Ciclooxigenasa 1/metabolismo , Ácidos Hidroxieicosatetraenoicos/biosíntesis , Pulmón/metabolismo , Mastocitos/metabolismo , Calcimicina/farmacología , Línea Celular , Humanos , Inmunoglobulina E/farmacología , Pulmón/citología , Mastocitos/citología
4.
Front Oncol ; 10: 598872, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363029

RESUMEN

We studied DNA methylation profiles in four different cell populations from a unique constellation of monozygotic triplets in whom two had developed Hodgkin Lymphoma (HL). We detected shared differences in DNA methylation signatures when comparing the two HL-affected triplets with the non-affected triplet. The differences were observed in naïve B-cells and marginal zone-like B-cells. DNA methylation differences were also detected when comparing each of the HL-affected triplets against each other. Even though we cannot determine whether treatment and/or disease triggered the observed differences, we believe our data are important on behalf of forthcoming studies, and that it might provide important clues for a better understanding of HL pathogenesis.

5.
Haematologica ; 105(5): 1339-1350, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31582539

RESUMEN

Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor and together they regulate transcription of actin cytoskeleton genes. MKL1 is associated with hematologic malignancies and immunodeficiency, but its role in B cells is unexplored. Here we examined B cells from monozygotic triplets with an intronic deletion in MKL1, two of whom had been previously treated for Hodgkin lymphoma (HL). To investigate MKL1 and B-cell responses in the pathogenesis of HL, we generated Epstein-Barr virus-transformed lymphoblastoid cell lines from the triplets and two controls. While cells from the patients with treated HL had a phenotype close to that of the healthy controls, cells from the undiagnosed triplet had increased MKL1 mRNA, increased MKL1 protein, and elevated expression of MKL1-dependent genes. This profile was associated with elevated actin content, increased cell spreading, decreased expression of CD11a integrin molecules, and delayed aggregation. Moreover, cells from the undiagnosed triplet proliferated faster, displayed a higher proportion of cells with hyperploidy, and formed large tumors in vivo This phenotype was reversible by inhibiting MKL1 activity. Interestingly, cells from the triplet treated for HL in 1985 contained two subpopulations: one with high expression of CD11a that behaved like control cells and the other with low expression of CD11a that formed large tumors in vivo similar to cells from the undiagnosed triplet. This implies that pre-malignant cells had re-emerged a long time after treatment. Together, these data suggest that dysregulated MKL1 activity participates in B-cell transformation and the pathogenesis of HL.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad de Hodgkin , Linfocitos B , Células Cultivadas , Herpesvirus Humano 4 , Enfermedad de Hodgkin/genética , Humanos
6.
FASEB J ; 33(5): 6140-6153, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30735438

RESUMEN

Nonsteroidal anti-inflammatory drugs interfere with the metabolism of arachidonic acid to proinflammatory prostaglandins and leukotrienes by targeting cyclooxygenases (COXs), 5-lipoxygenase (LOX), or the 5-LOX-activating protein (FLAP). These and related enzymes act in conjunction with marked crosstalk within a complex lipid mediator (LM) network where also specialized proresolving LMs (SPMs) are formed. Here, we present how prominent LM pathways can be differentially modulated in human proinflammatory M1 and proresolving M2 macrophage phenotypes that, upon exposure to Escherichia coli, produce either abundant prostaglandins and leukotrienes (M1) or SPMs (M2). Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was applied to analyze and quantify the specific LM profiles. Besides expected on-target actions, we found that: 1) COX or 15-LOX-1 inhibitors elevate inflammatory leukotriene levels, 2) FLAP and 5-LOX inhibitors reduce leukotrienes in M1 but less so in M2 macrophages, 3) zileuton blocks resolution-initiating SPM biosynthesis, whereas FLAP inhibition increases SPM levels, and 4) that the 15-LOX-1 inhibitor 3887 suppresses SPM formation in M2 macrophages. Conclusively, interference with discrete LM biosynthetic enzymes in different macrophage phenotypes considerably affects the LM metabolomes with potential consequences for inflammation-resolution pharmacotherapy. Our data may allow better appraisal of the therapeutic potential of these drugs to intervene with inflammatory disorders.-Werner, M., Jordan, P. M., Romp, E., Czapka, A., Rao, Z., Kretzer, C., Koeberle, A., Garscha, U., Pace, S., Claesson, H.-E., Serhan, C. N., Werz, O., Gerstmeier, J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome.


Asunto(s)
Leucotrienos/metabolismo , Macrófagos/metabolismo , Metaboloma , Prostaglandinas/metabolismo , Adulto , Antiinflamatorios no Esteroideos/farmacología , Células Cultivadas , Inhibidores de la Ciclooxigenasa/farmacología , Humanos , Antagonistas de Leucotrieno/farmacología , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Macrófagos/efectos de los fármacos , Antagonistas de Prostaglandina/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo
7.
Am J Respir Cell Mol Biol ; 57(6): 692-701, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28723225

RESUMEN

Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 µM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Caliciformes/metabolismo , Ácidos Hidroxieicosatetraenoicos/biosíntesis , Interleucina-13/farmacología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Araquidonato 15-Lipooxigenasa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor Nuclear 3-beta del Hepatocito/biosíntesis , Factor Nuclear 3-gamma del Hepatocito/biosíntesis , Humanos , Ácidos Linoleicos/biosíntesis , Mucina 5AC/biosíntesis
8.
FASEB J ; 31(2): 491-504, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27825104

RESUMEN

Dendritic cells (DCs) involved in proinflammatory immune responses derive mainly from peripheral monocytes, and the cells subsequently mature and migrate into the inflammatory micromilieu. Here we report that suppressing of 15-lipoxygenase-1 led to a substantial reduction in DC spreading and podosome formation in vitro. The surface expression of CD83 was significantly lower in both sh-15-lipoxygenase-1 (15-LOX-1)-transduced cells and DCs cultivated in the presence of a novel specific 15-LOX-1 inhibitor. The T-cell response against tetanus-pulsed DCs was only affected to a minor extent on inhibition of 15-LOX-1. In contrast, endocytosis and migration ability of DCs were significantly suppressed on 15-LOX-1 inhibition. The expression of 15-LOX-1 in DCs was also demonstrated in affected human skin in atopic and contact dermatitis, showing that the enzyme is indeed expressed in inflammatory diseases in vivo. This study demonstrated that inhibiting 15-LOX-1 led to an impaired podosome formation in DCs, and consequently suppressed antigen uptake and migration capacity. These results indicated that 15-LOX-1 is a potential target for inhibiting the trafficking of DCs to lymphoid organs and inflamed tissues and decreasing the inflammatory response attenuating symptoms of certain immunologic and inflammatory disorders such as dermatitis.-Han, H., Liang, X., Ekberg, M., Kritikou, J. S., Brunnström, Å., Pelcman, B., Matl, M., Miao, X., Andersson, M., Yuan, X., Schain, F., Parvin, S., Melin, E., Sjöberg, J., Xu, D., Westerberg, L. S., Björkholm, M., Claesson, H.-E. Human 15-lipoxygenase-1 is a regulator of dendritic-cell spreading and podosome formation.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Citocinas/metabolismo , Células Dendríticas/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Podosomas/fisiología , Araquidonato 15-Lipooxigenasa/genética , Movimiento Celular/fisiología , Citocinas/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Células de Langerhans/metabolismo , Monocitos , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-26210919

RESUMEN

The key enzyme in leukotriene (LT) biosynthesis is 5-lipoxygenase (5-LO), which is expressed in myeloid cells and in B lymphocytes. There are three phosphorylation sites on 5-LO (Ser271, Ser523 and Ser663). Protein kinase A (PKA) phosphorylates 5-LO on Ser523. In this report, we demonstrate by immunoblotting that native 5-LO in mantle B cell lymphoma (MCL) cells (Granta519, JEKO1, and Rec1) and in primary chronic B lymphocytic leukemia cells (B-CLL) is phosphorylated on Ser523. In contrast, we could not detect phosphorylation of 5-LO on Ser523 in human granulocytes or monocytes. Phosphorylated 5-LO was purified from Rec1 cells, using an ATP-agarose column, and the partially purified enzyme could be dephosphorylated with alkaline phosphatase. Incubation of Rec1 cells with 8-Br-cAMP or prostaglandin E2 stimulated phosphorylation at Ser523. Furthermore, FLAG-5LO was expressed in Rec1 cells, and the cells were cultivated in the presence of 8-Br-cAMP. The 5-LO protein from these cells was immunoprecipitated, first with anti-FLAG, followed by anti-pSer523-5-LO. The presence of 5-LO protein in the final precipitate further supported the finding that the protein recognized by the pSer523 antibody was 5-LO. Taken together, this study shows that 5-LO in B cells is phosphorylated on Ser523 and demonstrates for the first time a chemical difference between 5-LO in myeloid cells and B cells.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Linfocitos B/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Linfoma de Células del Manto/metabolismo , Fosforilación , Serina/metabolismo , Línea Celular Tumoral , AMP Cíclico/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células del Manto/patología , Células Mieloides/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
10.
Prostaglandins Other Lipid Mediat ; 121(Pt A): 122-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26115646

RESUMEN

Classical Hodgkin lymphoma (cHL) has a unique pathological feature characterized by a minority of malignant Hodgkin Reed-Sternberg (H-RS) cells surrounded by numerous inflammatory cells. Cysteinyl-leukotrienes (CysLTs) are produced by eosinophils, macrophages and mast cells in the HL tumor microenvironment. In the present study we have explored the signal transduction pathways leading to leukotriene (LT) D4 induced expression of cytokines in the Hodgkin lymphoma cell line L1236 and KM-H2. Stimulation of L1236 and KM-H2 cells with LTD4 led to a concentration- and time-dependent increase at the transcriptional level of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3) and CCL4. The expression of several transcription factors was induced upon stimulation of Hodgkin cell lines with LTD4. Among these, EGR-1 was required for cytokine production. Inhibition of EGR-1 expression using shEGR-1 transduced by lentivirus led to suppression of the expression of TNF-α and IL-6. The effect of LTD4 on the expression of transcription factors and cytokines were also blocked by the specific CysLT1 receptor antagonist zafirlukast. These results demonstrate that EGR-1 plays a critical role in LTD4-induced cytokine transcription in Hodgkin cell lines.


Asunto(s)
Citocinas/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Enfermedad de Hodgkin/patología , Leucotrieno D4/farmacología , Transcripción Genética/efectos de los fármacos , Línea Celular Tumoral , Proteína 1 de la Respuesta de Crecimiento Precoz/deficiencia , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Enfermedad de Hodgkin/genética , Humanos , Receptores de Leucotrienos/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Bioorg Med Chem Lett ; 25(15): 3017-23, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26037319

RESUMEN

High-throughput screening was used to find selective inhibitors of human 15-lipoxygenase-1 (15-LOX-1). One hit, a 1-benzoyl substituted pyrazole-3-carboxanilide (1a), was used as a starting point in a program to develop potent and selective 15-LOX-1 inhibitors.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Pirazoles/química , Pirazoles/farmacología , Amidas/química , Amidas/farmacología , Humanos
12.
Bioorg Med Chem Lett ; 25(15): 3024-9, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26037322

RESUMEN

Investigation of 1N-substituted pyrazole-3-carboxanilides as 15-lipoxygenase-1 (15-LOX-1) inhibitors demonstrated that the 1N-substituent was not essential for activity or selectivity. Additional halogen substituents on the pyrazole ring, however, increased activity. Further development led to triazole-4-carboxanilides and 2-(3-pyrazolyl) benzoxazoles, which are potent and selective 15-LOX-1 inhibitors.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Pirazoles/química , Pirazoles/farmacología , Triazoles/química , Triazoles/farmacología , Benzoxazoles/química , Benzoxazoles/farmacología , Humanos , Relación Estructura-Actividad
13.
Prostaglandins Other Lipid Mediat ; 121(Pt A): 83-90, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26026713

RESUMEN

Several lines of evidence indicate that 15-lipoxygenase type 1 (15-LO-1) plays a pathophysiological role in asthma. The aim for this study was to investigate the 15-LO-1 expression and activity in primary human airway epithelial cells cultivated on micro-porous filters at air-liquid interface. Incubation of human airway epithelial cells with arachidonic acid led to the formation of 15(S)-hydroxy-eicosatetraenoic acid (15-HETE) and exposing the cells to bacteria or physical injury markedly increased their production of 15-HETE. The cells were also found to convert arachidonic acid to eoxin C4 (EXC4). Subcellular fractionation revealed that the conversion of EXA4 to EXC4 was catalyzed by a soluble glutathione transferase (GST). The GST P1-1 enzyme was found to possess the highest activity of the investigated soluble GSTs. Following IL-4 treatment of airway epithelial cells, microarray analysis confirmed high expression of 15-LO-1 and GST P1-1, and immunohistochemical staining of bronchial biopsies revealed co-localization of 15-LO-1 and GST P1-1 in airway epithelial cells. These results indicate that respiratory infection and cell injury may activate the 15-LO pathway in airway epithelial cells. Furthermore, we also demonstrate that airway epithelial cells have the capacity to produce EXC4.


Asunto(s)
Bronquios/citología , Células Epiteliales/metabolismo , Ácidos Hidroxieicosatetraenoicos/biosíntesis , Leucotrienos/biosíntesis , Araquidonato 15-Lipooxigenasa/metabolismo , Ácido Araquidónico/metabolismo , Biocatálisis , Línea Celular , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Humanos , Transporte de Proteínas , Solubilidad
14.
PLoS One ; 9(2): e90018, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587191

RESUMEN

BACKGROUND: Fractional exhaled nitric oxide is elevated in allergen-provoked asthma. The cellular and molecular source of the elevated fractional exhaled nitric oxide is, however, uncertain. OBJECTIVE: To investigate whether fractional exhaled nitric oxide is associated with increased airway epithelial inducible nitric oxide synthase (iNOS) in allergen-provoked asthma. METHODS: Fractional exhaled nitric oxide was measured in healthy controls (n = 14) and allergic asthmatics (n = 12), before and after bronchial provocation to birch pollen out of season. Bronchoscopy was performed before and 24 hours after allergen provocation. Bronchial biopsies and brush biopsies were processed for nitric oxide synthase activity staining with nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), iNOS immunostaining, or gene expression analysis of iNOS by real-time PCR. NADPH-d and iNOS staining were quantified using automated morphometric analysis. RESULTS: Fractional exhaled nitric oxide and expression of iNOS mRNA were significantly higher in un-provoked asthmatics, compared to healthy controls. Allergic asthmatics exhibited a significant elevation of fractional exhaled nitric oxide after allergen provocation, as well as an accumulation of airway eosinophils. Moreover, nitric oxide synthase activity and expression of iNOS was significantly increased in the bronchial epithelium of asthmatics following allergen provocation. Fractional exhaled nitric oxide correlated with eosinophils and iNOS expression. CONCLUSION: Higher fractional exhaled nitric oxide concentration among asthmatics is associated with elevated iNOS mRNA in the bronchial epithelium. Furthermore, our data demonstrates for the first time increased expression and activity of iNOS in the bronchial epithelium after allergen provocation, and thus provide a mechanistic explanation for elevated fractional exhaled nitric oxide in allergen-provoked asthma.


Asunto(s)
Alérgenos , Asma/enzimología , Bronquios/enzimología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/biosíntesis , Polen , ARN Mensajero/metabolismo , Adulto , Asma/patología , Bronquios/patología , Pruebas de Provocación Bronquial , Estudios de Casos y Controles , Células Epiteliales/metabolismo , Células Epiteliales/patología , Espiración , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , ARN Mensajero/genética , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
15.
PLoS One ; 9(1): e85085, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465480

RESUMEN

Arachidonate 15-lipoxygenase-1 (ALOX15) oxygenates polyunsaturated fatty acids and bio-membranes, generating multiple lipid signalling mediators involved in inflammation. Several lines of evidence indicate that ALOX15 activation in the respiratory tract contributes to asthma progression. Recent experimental data reveals that histone modification at the promoter plays a critical role in ALOX15 gene transcription. In the present study, we examined the status of histone H3 trimethyl-lysine 27 (H3K27me3) at the ALOX15 promoter by chromatin immunoprecipitation assay in human lung epithelial carcinoma A549 cells incubated with or without interleukin (IL)-4. We identified demethylation of H3K27me3 at the ALOX15 promoter after IL-4 treatment. Furthermore, we found that the H3K27me2/3-specific demethylase, ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), mediates the H3K27me3 demethylation during ALOX15 transcriptional activation. When UTX expression was knocked down using siRNA, IL-4-mediated H3K27me3 demethylation and ALOX15 induction were significantly attenuated. The critical role of UTX in ALOX15 expression was confirmed in human monocytes and the Hodgkin lymphoma (HL) cell line L1236, but was in these cells not related to H3K27me3-demethylase activity. These results demonstrate that UTX is implicated in IL-4 mediated transcriptional activation of the ALOX15 gene.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Interleucina-4/farmacología , Proteínas Nucleares/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Inmunoprecipitación de Cromatina , Histona Demetilasas/genética , Humanos , Interleucina-4/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos
16.
Int Arch Allergy Immunol ; 162(2): 135-42, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23921438

RESUMEN

BACKGROUND: The effect of aspirin on the release of key arachidonic acid metabolites in activated eosinophils from subjects with aspirin-intolerant asthma (AIA) has not been investigated previously, despite the characteristic eosinophilia in AIA. METHODS: Peripheral blood eosinophils were isolated from four groups of subjects: healthy volunteers (HV; n = 8), mild asthma (MA; n = 8), severe asthma (SA; n = 9) and AIA (n = 7). In the absence or presence of lysine-aspirin, eosinophils were stimulated with arachidonic acid or calcium ionophore to trigger the 15-lipoxygenase-1 (15-LO) and 5-lipoxygenase (5-LO) pathways, respectively. 15(S)-hydroxy-eicosatetraenoic acid (15-HETE) and eoxin C4 (EXC4) were measured as 15-LO products and leukotriene (LT)C4 as a product of the 5-LO pathway. RESULTS: Activated eosinophils from patients with SA and AIA produced approximately five times more 15-HETE than eosinophils from HV or MA patients. In the presence of lysine-aspirin, eosinophils from AIA, MA and SA patients generated higher levels of 15-HETE than in the absence of lysine-aspirin. Furthermore, in the presence of lysine-aspirin, formation of EXC4 was also significantly increased in eosinophils from AIA patients, and LTC4 synthesis was increased both in AIA and SA patients. CONCLUSIONS: Taken together, this study shows an increased release of the recently discovered lipid mediator EXC4, as well as the main indicator of 15-LO activity, 15-HETE, in activated eosinophils from severe and aspirin-intolerant asthmatics, and also elevated EXC4 and LTC4 formation in eosinophils from AIA patients after cellular activation in the presence of lysine-aspirin. The findings support a pathophysiological role of the 15-LO pathway in SA and AIA.


Asunto(s)
Aspirina/efectos adversos , Asma Inducida por Aspirina/inmunología , Eosinófilos/efectos de los fármacos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Leucotrieno C4/metabolismo , Leucotrienos/metabolismo , Adulto , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Ácido Araquidónico/metabolismo , Aspirina/inmunología , Asma Inducida por Aspirina/metabolismo , Eosinófilos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
17.
J Immunol Methods ; 385(1-2): 60-70, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22921685

RESUMEN

Epstein Barr virus (EBV) is carried by almost all adults, mostly without clinical manifestations. Latent virus infection of B lymphocytes induces activation and proliferation that can be demonstrated in vitro. In healthy individuals, generation of EBV induced malignant proliferation is avoided by continuous immunological surveillance. The proliferation inducing set of the virally encoded genes is expressed exclusively in B cells in a defined differentiation window. It comprises nine EBV encoded nuclear proteins, EBNA 1-6, and three cell membrane associated proteins, LMP-1, 2A and 2B, designated as latency Type III. Outside this window the expression of the viral genes is limited. Healthy carriers harbor a low number of B lymphocytes in which the viral genome is either silent or expresses one virally encoded protein, EBNA-1, latency Type I. In addition, EBV genome carrying B cells can lack either EBNA-2 or LMP-1, latency Type IIa or Type IIb respectively. These cells have no inherent proliferation capacity. Detection of both EBNA-2 and LMP-1 can identify B cells with growth potential. We devised therefore a method for their simultaneous detection in cytospin deposited cell populations. Simultaneous detection of EBNA-2 and LMP-1 was reported earlier in tissues derived from infectious mononucleosis (IM), postransplantation lymphoproliferative disorders (PTLD) and from "humanized" mice infected with EBV. We show for the first time the occurrence of Type IIa and Type IIb cells in cord blood lymphocyte populations infected with EBV in vitro. Further, we confirm the variation of EBNA-2 and LMP-1 expression in several Type III lines and that they vary independently in individual cells. We visualize that in Type III LCL, induced for plasmacytoid differentiation by IL-21 treatment, EBV protein expression changes to Type IIa (EBNA-2 negative LMP-1 positive). We also show that when the proliferation of EBV infected cord blood lymphocyte culture is inhibited by the immunomodulator, PSK, the majority of the cells express latency Type IIa pattern. These results show that by modifying the differentiation state, the proliferating EBV positive B cells can be "curbed". Type IIa expression is a characteristic for EBV positive Reed-Sternberg (R/S) cells in EBV positive Hodgkin's lymphomas. For survival and proliferation, the R/S cells require the contribution of the in vivo microenvironment. Consequently, Type IIa lines could not be established from Hodgkin's lymphoma in vitro. We propose that these experimental cultures can be exploited for study of the Type IIa cells.


Asunto(s)
Linfocitos B/inmunología , Proliferación Celular , Antígenos Nucleares del Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/inmunología , Análisis de la Célula Individual/métodos , Proteínas de la Matriz Viral/inmunología , Proteínas Virales/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/virología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Immunoblotting , Interleucinas/farmacología , Antígeno Ki-67/inmunología , Antígeno Ki-67/metabolismo , Reproducibilidad de los Resultados , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-22921794

RESUMEN

Human 15-lipoxygenase-1 (LO) possesses mainly 15-lipoxygenase activity whereas the animal ortholog 12/15-LO possesses mainly 12-lipoxygenase activity. These findings have raised the question if studies on animals can predict the function of 15-LO-1 in human. In this study we have characterized the arachidonic acid metabolites formed by porcine 12/15-LO. Mini pigs were infected with a parasite to increase the number of blood eosinophils, which highly express 12/15-LO. Isolated porcine polymorphonuclear leukocytes (PMNL) were incubated with arachidonic acid and the produced metabolites were analysed with HPLC and mass spectrometry (MS). The cells were found to produce 15-hydroxyeicosatetraenoic acid (HETE) and 12-HETE at a ratio of 1:5. Furthermore 8,15-dihydroxyeicosatetraenoic acids (DiHETEs) and 14,15-DiHETE were formed. Based on HPLC, UV-spectroscopy and MS analysis it was found that porcine PMNL also produced eoxin (EX) C4. These results demonstrate that although porcine 12/15-LO possesses primarily 12-lipoxygenase activity, the enzyme can catalyse the formation of EXC(4).


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Leucocitos/metabolismo , Leucotrienos/biosíntesis , Animales , Ácido Araquidónico/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Neutrófilos/metabolismo , Porcinos
19.
Lipids ; 47(8): 781-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22684912

RESUMEN

Human 15-lipoxygenase-1 (15-LO-1) can metabolize arachidonic acid (ARA) into pro-inflammatory mediators such as the eoxins, 15-hydroperoxyeicosatetraenoic acid (HPETE), and 15-hydroxyeicosatetraenoyl-phosphatidylethanolamine. We have in this study investigated the formation of various lipid hydroperoxide by either purified 15-LO-1 or in the Hodgkin lymphoma cell line L1236, which contain abundant amount of 15-LO-1. Both purified 15-LO-1 and L1236 cells produced lipid hydroperoxides more efficiently when anandamide (AEA) or 2-arachidonoyl-glycerol ester was used as substrate than with ARA. Furthermore, L1236 cells converted AEA to a novel class of cysteinyl-containing metabolites. Based on RP-HPLC, mass spectrometry and comparison to synthetic products, these metabolites were identified as the ethanolamide of the eoxin (EX) C(4) and EXD(4). By using the epoxide EXA(4)-ethanol amide, it was also found that platelets have the capacity to produce the ethanolamide of EXC(4) and EXD(4). We suggest that the ethanolamides of the eoxins should be referred to as eoxamides, in analogy to the ethanolamides of prostaglandins which are named prostamides. The metabolism of AEA into eoxamides might engender molecules with novel biological effects. Alternatively, it might represent a new mechanism for the termination of AEA signalling.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Glutatión Transferasa/metabolismo , Glicéridos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Línea Celular Tumoral , Enfermedad de Hodgkin/metabolismo , Humanos , Leucotrieno D4/análogos & derivados , Leucotrieno D4/biosíntesis , Leucotrienos/biosíntesis , Lipooxigenasa/metabolismo
20.
Exp Cell Res ; 318(3): 169-76, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22094113

RESUMEN

Lipoxygenases oxidatively metabolize polyunsaturated fatty acids to a rich spectrum of biologically active metabolites. The present study aimed at delineating the transcriptional and epigenetic mechanisms leading to 15-lipoxygenase-1 (15-LOX-1) expression in the Hodgkin lymphoma (HL) cell line L1236. Examination of the 15-LOX-1 5' promoter region demonstrated three putative binding sites for signal transducer and activator of transcription (STAT6) within the proximal 1200 base pairs relative to the start codon. Analysis by serial promoter deletions and STAT6 binding site mutations indicated that all three STAT6 binding sites are required for full activation of the 15-LOX-1 promoter. Chromatin immunoprecipitation assay demonstrated that these regions were occupied by STAT6 in L1236 (15-LOX-1 positive) but not in L428 (15-LOX-1 negative) cultured HL cells. Furthermore, DNA hypomethylation and histone hyperacetylation were detectable within the core promoter region of 15-LOX-1 only in L1236 cells but not L428 cells. Taken together, our data indicate that STAT6 activation and chromatin remodeling by DNA demethylation and histone acetylation are crucial for transcriptional activation of 15-LOX-1 in cultured HL cells. These prerequisites are fulfilled in the L1236 cell line, but not in the L428 cell line.


Asunto(s)
Araquidonato 15-Lipooxigenasa/genética , Epigénesis Genética/fisiología , Enfermedad de Hodgkin/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Enfermedad de Hodgkin/metabolismo , Enfermedad de Hodgkin/patología , Humanos , Regiones Promotoras Genéticas/fisiología , Unión Proteica , Elementos de Respuesta , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/fisiología , Transcripción Genética/genética , Transcripción Genética/fisiología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA