Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 45(10): 1249-54, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23974869

RESUMEN

Huntington's disease is a fatal neurodegenerative disorder caused by a CAG repeat expansion encoding a polyglutamine tract in the huntingtin (Htt) protein. Here we report a genome-wide overexpression suppressor screen in which we identified 317 ORFs that ameliorate the toxicity of a mutant Htt fragment in yeast and that have roles in diverse cellular processes, including mitochondrial import and copper metabolism. Two of these suppressors encode glutathione peroxidases (GPxs), which are conserved antioxidant enzymes that catalyze the reduction of hydrogen peroxide and lipid hydroperoxides. Using genetic and pharmacological approaches in yeast, mammalian cells and Drosophila, we found that GPx activity robustly ameliorates Huntington's disease-relevant metrics and is more protective than other antioxidant approaches tested here. Notably, we found that GPx activity, unlike many antioxidant treatments, does not inhibit autophagy, which is an important mechanism for clearing mutant Htt. Because previous clinical trials have indicated that GPx mimetics are well tolerated in humans, this study may have important implications for treating Huntington's disease.


Asunto(s)
Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Enfermedad de Huntington/prevención & control , Animales , Humanos , Enfermedad de Huntington/enzimología , Sistemas de Lectura Abierta , Células PC12 , Ratas
2.
Chromosoma ; 121(5): 489-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22903800

RESUMEN

Macrosatellites are large polymorphic tandem arrays. The human subtelomeric macrosatellite D4Z4 has 11-150 repeats, each containing a copy of the intronless DUX4 gene. DUX4 is linked to facioscapulohumeral muscular dystrophy, but its normal function is unknown. The DUX gene family includes DUX4, the intronless Dux macrosatellites in rat and mouse, as well as several intron-containing members (DUXA, DUXB, Duxbl, and DUXC). Here, we report that the genomic organization (though not the syntenic location) of primate DUX4 is conserved in the Afrotheria. In primates and Afrotheria, DUX4 arose by retrotransposition of an ancestral intron-containing DUXC, which is itself not found in these species. Surprisingly, we discovered a similar macrosatellite organization for DUXC in cow and other Laurasiatheria (dog, alpaca, dolphin, pig, and horse), and in Xenarthra (sloth). Therefore, DUX4 and Dux are not the only DUX gene macrosatellites. Our data suggest a new retrotransposition-displacement model for the evolution of intronless DUX macrosatellites.


Asunto(s)
Evolución Molecular , Proteínas de Homeodominio/genética , Mamíferos/genética , Secuencias Repetidas en Tándem , Animales , Bovinos , Cromosomas de los Mamíferos/genética , Humanos , Ratones , Datos de Secuencia Molecular
3.
J Biol Chem ; 286(1): 410-9, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21044956

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the huntingtin (htt) protein. To uncover candidate therapeutic targets and networks involved in pathogenesis, we integrated gene expression profiling and functional genetic screening to identify genes critical for mutant htt toxicity in yeast. Using mRNA profiling, we have identified genes differentially expressed in wild-type yeast in response to mutant htt toxicity as well as in three toxicity suppressor strains: bna4Δ, mbf1Δ, and ume1Δ. BNA4 encodes the yeast homolog of kynurenine 3-monooxygenase, a promising drug target for HD. Intriguingly, despite playing diverse cellular roles, these three suppressors share common differentially expressed genes involved in stress response, translation elongation, and mitochondrial transport. We then systematically tested the ability of the differentially expressed genes to suppress mutant htt toxicity when overexpressed and have thereby identified 12 novel suppressors, including genes that play a role in stress response, Golgi to endosome transport, and rRNA processing. Integrating the mRNA profiling data and the genetic screening data, we have generated a robust network that shows enrichment in genes involved in rRNA processing and ribosome biogenesis. Strikingly, these observations implicate dysfunction of translation in the pathology of HD. Recent work has shown that regulation of translation is critical for life span extension in Drosophila and that manipulation of this process is protective in Parkinson disease models. In total, these observations suggest that pharmacological manipulation of translation may have therapeutic value in HD.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidad , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Secuencia de Bases , Eliminación de Gen , Genómica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Proteínas Mutantes/biosíntesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidad , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta/genética , ARN Ribosómico/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/citología , Transgenes/genética
4.
Am J Hum Genet ; 81(2): 264-79, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17668377

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is caused by deletions within the polymorphic DNA tandem array D4Z4. Each D4Z4 repeat unit has an open reading frame (ORF), termed "DUX4," containing two homeobox sequences. Because there has been no evidence of a transcript from the array, these deletions are thought to cause FSHD by a position effect on other genes. Here, we identify D4Z4 homologues in the genomes of rodents, Afrotheria (superorder of elephants and related species), and other species and show that the DUX4 ORF is conserved. Phylogenetic analysis suggests that primate and Afrotherian D4Z4 arrays are orthologous and originated from a retrotransposed copy of an intron-containing DUX gene, DUXC. Reverse-transcriptase polymerase chain reaction and RNA fluorescence and tissue in situ hybridization data indicate transcription of the mouse array. Together with the conservation of the DUX4 ORF for >100 million years, this strongly supports a coding function for D4Z4 and necessitates re-examination of current models of the FSHD disease mechanism.


Asunto(s)
Evolución Molecular , Distrofia Muscular Facioescapulohumeral/genética , Secuencias Repetidas en Tándem , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Proteínas de Homeodominio , Humanos , Hibridación Fluorescente in Situ , Mamíferos , Ratones , Datos de Secuencia Molecular , Mutación , Filogenia , Primates , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transcripción Genética
5.
Brief Funct Genomic Proteomic ; 2(3): 213-23, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15239924

RESUMEN

The genomic basis of facioscapulohumeral muscular dystrophy (FSHD) is of considerable interest because of the unique nature of the molecular mutation, which is a deletion within a large, complex DNA tandem array (D4Z4). This repeat maps within 30 kb of the 4q telomere. Although D4Z4 repeat units each contain an open reading frame that could encode a homeodomain protein, there is no evidence that the repeat is transcribed, and the underlying disease mechanism probably involves a position effect. A recent study has identified a protein complex bound to D4Z4 that contains YY1 and HMGB2, implicating a role for D4Z4 as a repressor. The 4q telomere has two variants, 4qA and 4qB. Although these alleles are present at almost equal frequencies in the general population, FSHD is associated only with the 4qA allele and never with 4qB. This suggests a functional difference between the telomere variants, either in predisposition to deletions within D4Z4 or in the pathological consequence of the deletion. Comparative mapping studies of the FSHD region in primates, mouse and Fugu rubripes have given insights into the evolutionary history of the D4Z4 repeat and of 4qter, although as yet they have not provided any solutions to the FSHD puzzle.


Asunto(s)
Genómica , Distrofia Muscular Facioescapulohumeral/genética , Animales , Cromosomas Humanos Par 10 , Cromosomas Humanos Par 4 , Humanos , Mapeo Físico de Cromosoma , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA