Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 20: 4688-4703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147681

RESUMEN

Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibiotic's mechanism of action influences the emergence of resistance would aid in the design of new drugs and help to preserve the effectiveness of existing ones. To this end, we developed a model that links bacterial population dynamics with antibiotic-target binding kinetics. Our approach allows us to derive mechanistic insights on drug activity from population-scale experimental data and to quantify the interplay between drug mechanism and resistance selection. We find that both bacteriostatic and bactericidal agents can be equally effective at suppressing the selection of resistant mutants, but that key determinants of resistance selection are the relationships between the number of drug-inactivated targets within a cell and the rates of cellular growth and death. We also show that heterogeneous drug-target binding within a population enables resistant bacteria to evolve fitness-improving secondary mutations even when drug doses remain above the resistant strain's minimum inhibitory concentration. Our work suggests that antibiotic doses beyond this "secondary mutation selection window" could safeguard against the emergence of high-fitness resistant strains during treatment.

2.
BMC Bioinformatics ; 23(1): 22, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991453

RESUMEN

BACKGROUND: As antibiotic resistance creates a significant global health threat, we need not only to accelerate the development of novel antibiotics but also to develop better treatment strategies using existing drugs to improve their efficacy and prevent the selection of further resistance. We require new tools to rationally design dosing regimens from data collected in early phases of antibiotic and dosing development. Mathematical models such as mechanistic pharmacodynamic drug-target binding explain mechanistic details of how the given drug concentration affects its targeted bacteria. However, there are no available tools in the literature that allow non-quantitative scientists to develop computational models to simulate antibiotic-target binding and its effects on bacteria. RESULTS: In this work, we have devised an extension of a mechanistic binding-kinetic model to incorporate clinical drug concentration data. Based on the extended model, we develop a novel and interactive web-based tool that allows non-quantitative scientists to create and visualize their own computational models of bacterial antibiotic target-binding based on their considered drugs and bacteria. We also demonstrate how Rifampicin affects bacterial populations of Tuberculosis bacteria using our vCOMBAT tool. CONCLUSIONS: The vCOMBAT online tool is publicly available at https://combat-bacteria.org/ .


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Bacterias/genética , Simulación por Computador , Modelos Biológicos
3.
PLoS Comput Biol ; 16(8): e1008106, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32797079

RESUMEN

Antibiotic resistance is rising and we urgently need to gain a better quantitative understanding of how antibiotics act, which in turn would also speed up the development of new antibiotics. Here, we describe a computational model (COMBAT-COmputational Model of Bacterial Antibiotic Target-binding) that can quantitatively predict antibiotic dose-response relationships. Our goal is dual: We address a fundamental biological question and investigate how drug-target binding shapes antibiotic action. We also create a tool that can predict antibiotic efficacy a priori. COMBAT requires measurable biochemical parameters of drug-target interaction and can be directly fitted to time-kill curves. As a proof-of-concept, we first investigate the utility of COMBAT with antibiotics belonging to the widely used quinolone class. COMBAT can predict antibiotic efficacy in clinical isolates for quinolones from drug affinity (R2>0.9). To further challenge our approach, we also do the reverse: estimate the magnitude of changes in drug-target binding based on antibiotic dose-response curves. We overexpress target molecules to infer changes in antibiotic-target binding from changes in antimicrobial efficacy of ciprofloxacin with 92-94% accuracy. To test the generality of our approach, we use the beta-lactam ampicillin to predict target molecule occupancy at MIC from antimicrobial action with 90% accuracy. Finally, we apply COMBAT to predict antibiotic concentrations that can select for resistance due to novel resistance mutations. Using ciprofloxacin and ampicillin as well defined test cases, our work demonstrates that drug-target binding is a major predictor of bacterial responses to antibiotics. This is surprising because antibiotic action involves many additional effects downstream of drug-target binding. In addition, COMBAT provides a framework to inform optimal antibiotic dose levels that maximize efficacy and minimize the rise of resistant mutants.


Asunto(s)
Antibacterianos , Biología Computacional/métodos , Desarrollo de Medicamentos/métodos , Quinolonas , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Infecciones por Enterobacteriaceae/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Quinolonas/administración & dosificación , Quinolonas/química , Quinolonas/metabolismo , Quinolonas/farmacología
4.
Cell Mol Life Sci ; 77(3): 381-394, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31768605

RESUMEN

Optimizing drug therapies for any disease requires a solid understanding of pharmacokinetics (the drug concentration at a given time point in different body compartments) and pharmacodynamics (the effect a drug has at a given concentration). Mathematical models are frequently used to infer drug concentrations over time based on infrequent sampling and/or in inaccessible body compartments. Models are also used to translate drug action from in vitro to in vivo conditions or from animal models to human patients. Recently, mathematical models that incorporate drug-target binding and subsequent downstream responses have been shown to advance our understanding and increase predictive power of drug efficacy predictions. We here discuss current approaches of modeling drug binding kinetics that aim at improving model-based drug development in the future. This in turn might aid in reducing the large number of failed clinical trials.


Asunto(s)
Diseño de Fármacos , Preparaciones Farmacéuticas/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Cinética , Modelos Teóricos
5.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443146

RESUMEN

Bacterial heteroresistance (i.e., the co-existence of several subpopulations with different antibiotic susceptibilities) can delay the clearance of bacteria even with long antibiotic exposure. Some proposed mechanisms have been successfully described with mathematical models of drug-target binding where the mechanism's downstream of drug-target binding are not explicitly modeled and subsumed in an empirical function, connecting target occupancy to antibiotic action. However, with current approaches it is difficult to model mechanisms that involve multi-step reactions that lead to bacterial killing. Here, we have a dual aim: first, to establish pharmacodynamic models that include multi-step reaction pathways, and second, to model heteroresistance and investigate which molecular heterogeneities can lead to delayed bacterial killing. We show that simulations based on Gillespie algorithms, which have been employed to model reaction kinetics for decades, can be useful tools to model antibiotic action via multi-step reactions. We highlight the strengths and weaknesses of current models and Gillespie simulations. Finally, we show that in our models, slight normally distributed variances in the rates of any event leading to bacterial death can (depending on parameter choices) lead to delayed bacterial killing (i.e., heteroresistance). This means that a slowly declining residual bacterial population due to heteroresistance is most likely the default scenario and should be taken into account when planning treatment length.


Asunto(s)
Antibacterianos/farmacología , Algoritmos , Farmacorresistencia Bacteriana , Cinética , Pruebas de Sensibilidad Microbiana
6.
Mol Pharm ; 15(4): 1488-1494, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462563

RESUMEN

The diffusion coefficient (also known as diffusivity) of an active pharmaceutical ingredient (API) is a fundamental physicochemical parameter that affects passive diffusion through biological barriers and, as a consequence, bioavailability and biodistribution. However, this parameter is often neglected, and it is quite difficult to find diffusion coefficients of small molecules of pharmaceutical relevance in the literature. The available methods to measure diffusion coefficients of drugs all suffer from limitations that range from poor sensitivity to high selectivity of the measurements or the need for dedicated instrumentation. In this work, a simple but reliable method based on time-resolved concentration measurements by UV-visible spectroscopy in an unstirred aqueous environment was developed. This method is based on spectroscopic measurement of the variation of the local concentration of a substance during spontaneous migration of molecules, followed by standard mathematical treatment of the data in order to solve Fick's law of diffusion. This method is extremely sensitive and results in highly reproducible data. The technique was also employed to verify the influence of the environmental characteristics (i.e., ionic strength and presence of complexing agents) on the diffusivity. The method can be employed in any research laboratory equipped with a standard UV-visible spectrophotometer and could become a useful and straightforward tool in order to characterize diffusion coefficients in physiological conditions and help to better understand the drug permeability process.


Asunto(s)
Preparaciones Farmacéuticas/química , Agua/química , Difusión , Luz , Concentración Osmolar , Permeabilidad , Rayos Ultravioleta
7.
PLoS Comput Biol ; 13(1): e1005321, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28060813

RESUMEN

Identifying optimal dosing of antibiotics has proven challenging-some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood.


Asunto(s)
Antibacterianos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Modelos Biológicos , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biología Computacional , Farmacorresistencia Bacteriana , Humanos , Cinética , Pruebas de Sensibilidad Microbiana
8.
Math Biosci Eng ; 7(2): 277-300, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20462290

RESUMEN

Mycobacterium tuberculosis (Mtb) is a widely diffused infection. However, in general, the human immune system is able to contain it. In this work, we propose a mathematical model which describes the early immune response to the Mtb infection in the lungs, also including the possible evolution of the infection in the formation of a granuloma. The model is based on coupled reaction-diffusion-transport equations with chemotaxis, which take into account the interactions among bacteria, macrophages and chemoattractant. The novelty of this approach is in the modeling of the velocity field, proportional to the gradient of the pressure developed between the cells, which makes possible to deal with a full multidimensional description and efficient numerical simulations. We perform a linear stability analysis of the model and propose a robust implicit-explicit scheme to deal with long time simulations. Both in one and two-dimensions, we find that there are threshold values in the parameters space, between a contained infection and the uncontrolled bacteria growth, and the generation of granuloma-like patterns can be observed numerically.


Asunto(s)
Granuloma/inmunología , Macrófagos Alveolares/inmunología , Modelos Inmunológicos , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Quimiotaxis/inmunología , Simulación por Computador , Granuloma/microbiología , Humanos , Inmunidad Innata/inmunología , Macrófagos Alveolares/microbiología , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...