Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gastroenterology ; 156(8): 2266-2280, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30802444

RESUMEN

BACKGROUND & AIMS: Wheat-related disorders, a spectrum of conditions induced by the ingestion of gluten-containing cereals, have been increasing in prevalence. Patients with celiac disease have gluten-specific immune responses, but the contribution of non-gluten proteins to symptoms in patients with celiac disease or other wheat-related disorders is controversial. METHODS: C57BL/6 (control), Myd88-/-, Ticam1-/-, and Il15-/- mice were placed on diets that lacked wheat or gluten, with or without wheat amylase trypsin inhibitors (ATIs), for 1 week. Small intestine tissues were collected and intestinal intraepithelial lymphocytes (IELs) were measured; we also investigated gut permeability and intestinal transit. Control mice fed ATIs for 1 week were gavaged daily with Lactobacillus strains that had high or low ATI-degrading capacity. Nonobese diabetic/DQ8 mice were sensitized to gluten and fed an ATI diet, a gluten-containing diet or a diet with ATIs and gluten for 2 weeks. Mice were also treated with Lactobacillus strains that had high or low ATI-degrading capacity. Intestinal tissues were collected and IELs, gene expression, gut permeability and intestinal microbiota profiles were measured. RESULTS: In intestinal tissues from control mice, ATIs induced an innate immune response by activation of Toll-like receptor 4 signaling to MD2 and CD14, and caused barrier dysfunction in the absence of mucosal damage. Administration of ATIs to gluten-sensitized mice expressing HLA-DQ8 increased intestinal inflammation in response to gluten in the diet. We found ATIs to be degraded by Lactobacillus, which reduced the inflammatory effects of ATIs. CONCLUSIONS: ATIs mediate wheat-induced intestinal dysfunction in wild-type mice and exacerbate inflammation to gluten in susceptible mice. Microbiome-modulating strategies, such as administration of bacteria with ATI-degrading capacity, may be effective in patients with wheat-sensitive disorders.


Asunto(s)
Enfermedad Celíaca/inmunología , Dieta Sin Gluten/métodos , Gliadina/efectos adversos , Lactobacillus/inmunología , Triticum/efectos adversos , Amilasas/antagonistas & inhibidores , Animales , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/fisiopatología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/inmunología , Gliadina/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Lactobacillus/metabolismo , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Valores de Referencia , Sensibilidad y Especificidad , Triticum/inmunología , Inhibidores de Tripsina/inmunología , Inhibidores de Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...