Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 114, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913286

RESUMEN

Stem cell therapies are limited by poor cell survival and engraftment. A hurdle to the use of materials for cell delivery is the lack of understanding of material properties that govern transplanted stem cell functionality. Here, we show that synthetic hydrogels presenting integrin-specific peptides enhance the survival, persistence, and osteo-reparative functions of human bone marrow-derived mesenchymal stem cells (hMSCs) transplanted in murine bone defects. Integrin-specific hydrogels regulate hMSC adhesion, paracrine signaling, and osteoblastic differentiation in vitro. Hydrogels presenting GFOGER, a peptide targeting α2ß1 integrin, prolong hMSC survival and engraftment in a segmental bone defect and result in improved bone repair compared to other peptides. Integrin-specific hydrogels have diverse pleiotropic effects on hMSC reparative activities, modulating in vitro cytokine secretion and in vivo gene expression for effectors associated with inflammation, vascularization, and bone formation. These results demonstrate that integrin-specific hydrogels improve tissue healing by directing hMSC survival, engraftment, and reparative activities.


Asunto(s)
Enfermedades Óseas/terapia , Integrina alfa2beta1/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Enfermedades Óseas/metabolismo , Enfermedades Óseas/fisiopatología , Médula Ósea/química , Médula Ósea/metabolismo , Regeneración Ósea , Adhesión Celular , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Hidrogeles/química , Integrina alfa2beta1/genética , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Péptidos/metabolismo
2.
J Cell Sci ; 132(20)2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31558679

RESUMEN

Synthetic hydrogels with controlled physicochemical matrix properties serve as powerful in vitro tools to dissect cell-extracellular matrix (ECM) interactions that regulate epithelial morphogenesis in 3D microenvironments. In addition, these fully defined matrices overcome the lot-to-lot variability of naturally derived materials and have provided insights into the formation of rudimentary epithelial organs. Therefore, we engineered a fully defined synthetic hydrogel with independent control over proteolytic degradation, mechanical properties, and adhesive ligand type and density to study the impact of ECM properties on epithelial tubulogenesis for inner medullary collecting duct (IMCD) cells. Protease sensitivity of the synthetic material for membrane-type matrix metalloproteinase-1 (MT1-MMP, also known as MMP14) was required for tubulogenesis. Additionally, a defined range of matrix elasticity and presentation of RGD adhesive peptide at a threshold level of 2 mM ligand density were required for epithelial tubulogenesis. Finally, we demonstrated that the engineered hydrogel supported organization of epithelial tubules with a lumen and secreted laminin. This synthetic hydrogel serves as a platform that supports epithelial tubular morphogenetic programs and can be tuned to identify ECM biophysical and biochemical properties required for epithelial tubulogenesis.


Asunto(s)
Microambiente Celular , Células Epiteliales/metabolismo , Matriz Extracelular/química , Hidrogeles/química , Túbulos Renales Colectores/metabolismo , Túbulos Renales/metabolismo , Animales , Línea Celular Transformada , Células Epiteliales/citología , Túbulos Renales/citología , Túbulos Renales Colectores/citología , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Oligopéptidos/química
3.
Acta Biomater ; 67: 53-65, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29246650

RESUMEN

The use of human mesenchymal stromal cells (hMSC) for treating diseased tissues with poor vascularization has received significant attention, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have also been suggested as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. In this study, calcium-releasing particles and hMSC were combined within a hydrogel to examine their vasculogenic potential in vitro and in vivo. The particles provided sustained calcium release and showed proangiogenic stimulation in a chorioallantoic membrane (CAM) assay. The number of hMSC encapsulated in a degradable RGD-functionalized PEG hydrogel containing particles remained constant over time and IGF-1 release was increased. When implanted in the epidydimal fat pad of immunocompromised mice, this composite material improved cell survival and stimulated vessel formation and maturation. Thus, the combination of hMSC and calcium-releasing glass-ceramics represents a new strategy to achieve vessel stabilization, a key factor in the revascularization of ischemic tissues. STATEMENT OF SIGNIFICANCE: Increasing blood vessel formation in diseased tissues with poor vascularization is a current clinical challenge. Cell therapy using human mesenchymal stem cells has received considerable interest, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have been explored as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. By incorporating both human mesenchymal stem cells and glass-ceramic particles in an implantable hydrogel, this study provides insights into the vasculogenic potential in soft tissues of the combined strategies. Enhancement of vessel formation and maturation supports further investigation of this strategy.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Calcio/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células Madre Mesenquimatosas/metabolismo , Polietilenglicoles/química , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/fisiología , Inductores de la Angiogénesis/farmacología , Animales , Vasos Sanguíneos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Inmovilizadas/efectos de los fármacos , Células Inmovilizadas/metabolismo , Pollos , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Epidídimo/efectos de los fármacos , Epidídimo/fisiología , Humanos , Implantes Experimentales , Masculino , Maleimidas/química , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Tamaño de la Partícula
5.
ACS Biomater Sci Eng ; 2(4): 606-615, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33465862

RESUMEN

Plant viruses have been highlighted among material research due to their well-defined structures in nanoscale, monodispersity, stability, and chemical functionalities. Each of the thousands coat protein subunits on a viral nanoparticle can be homogeneously modified, chemically and genetically, with a functional ligand leading to a high-density and spatial distribution of ligands on each particle (multivalency). Previous reports from our group have evidenced that substrates coated with Tobacco mosaic virus (TMV) and its mutant promote early osteogenesis of mesenchymal stem cells (MSCs). We then fabricated a three-dimensional (3D) biopolymeric scaffold with rod-like TMV in the form of a sponge-like hydrogel for tissue engineering purposes. The hydrogel was functionalized with the cellular recognition peptide, arginine-glycine-aspartic acid (RGD), through an incorporation of an RGD mutant of TMV (TMV-RGD). The virus-functionalized hydrogel materials were shown to aid bone differentiation of MSCs in vitro. Herein, we performed an in vivo study based on the TMV and TMV-RGD hydrogels in Sprague-Dawley rats with cranial bone defects. This report substantiated the hypothesis that TMV-functionalized hydrogel scaffolds did not cause systemic toxicity when implanted in the defect site and that the TMV-based hydrogel platform can support cell localization and can be further optimized for bone regeneration and repair.

6.
J Biomed Mater Res A ; 104(4): 889-900, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26662727

RESUMEN

Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 ß1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv ß3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration.


Asunto(s)
Materiales Biocompatibles/metabolismo , Hidrogeles/metabolismo , Integrina alfa2beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Péptidos/metabolismo , Polietilenglicoles/metabolismo , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Materiales Biocompatibles/química , Regeneración Ósea/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrogeles/química , Masculino , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Péptidos/química , Polietilenglicoles/química , Radio (Anatomía)/lesiones , Radio (Anatomía)/fisiología , Reología , Factor A de Crecimiento Endotelial Vascular/farmacología
7.
J Mater Sci Mater Med ; 27(2): 38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26704555

RESUMEN

The development of elastomeric, bioresorbable and biocompatible segmented polyurethanes (SPUs) for use in tissue-engineering applications has attracted considerable interest because of the existing need of mechanically tunable scaffolds for regeneration of different tissues, but the incorporation of osteoinductive molecules into SPUs has been limited. In this study, SPUs were synthesized from poly (ε-caprolactone)diol, 4,4'-methylene bis(cyclohexyl isocyanate) using biologically active compounds such as ascorbic acid, L-glutamine, ß-glycerol phosphate, and dexamethasone as chain extenders. Fourier transform infrared spectroscopy (FTIR) revealed the formation of both urethanes and urea linkages while differential scanning calorimetry, dynamic mechanical analysis, X-ray diffraction and mechanical testing showed that these polyurethanes were semi-crystalline polymers exhibiting high deformations. Cytocompatibility studies showed that only SPUs containing ß-glycerol phosphate supported human mesenchymal stem cell adhesion, growth, and osteogenic differentiation, rendering them potentially suitable for bone tissue regeneration, whereas other SPUs failed to support either cell growth or osteogenic differentiation, or both. This study demonstrates that modification of SPUs with osteogenic compounds can lead to new cytocompatible polymers for regenerative medicine applications.


Asunto(s)
Materiales Biocompatibles/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Poliuretanos/química , Andamios del Tejido/química , Huesos/citología , Huesos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Ensayo de Materiales , Fenómenos Mecánicos , Células Madre Mesenquimatosas/fisiología , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
8.
Biomed Microdevices ; 16(5): 727-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24907052

RESUMEN

While many advanced liver models support hepatic phenotypes necessary for drug and disease studies, these models are characterized by intricate features such as co-culture with one of more supporting cell types or advanced media perfusion systems. These systems have helped elucidate some of the critical biophysical features missing from standard well-plate based hepatocyte culture, but their advanced designs add to their complexity. Additionally, regardless of the culture system, primary hepatocyte culture systems suffer from reproducibility issues due to phenotypic variation and expensive, limited supplies of donor lots. Here we describe a microfluidic bilayer device that sustains primary human hepatocyte phenotypes, including albumin production, factor IX production, cytochrome P450 3A4 drug metabolism and bile canaliculi formation for at least 14 days in a simple monoculture format with static media. Using a variety of channel architectures, we describe how primary cell phenotype is promoted by spatial confinement within the microfluidic channel, without the need for perfusion or co-culture. By sourcing human hepatocytes expanded in the Fah, Rag2, and Il2rg-knockout (FRG™-KO) humanized mouse model, utilizing a few hundred hepatocytes within each channel, and maintaining hepatocyte function for weeks in vitro within a relatively simple model, we demonstrate a basic primary human hepatocyte culture system that addresses many of the major hurdles in human hepatocyte culture research.


Asunto(s)
Técnicas de Cultivo de Célula , Proliferación Celular , Hepatocitos/metabolismo , Hígado , Técnicas Analíticas Microfluídicas , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Hep G2 , Hepatocitos/citología , Humanos , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
9.
Biomaterials ; 35(21): 5453-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24726536

RESUMEN

Non-healing bone defects present tremendous socioeconomic costs. Although successful in some clinical settings, bone morphogenetic protein (BMP) therapies require supraphysiological dose delivery for bone repair, raising treatment costs and risks of complications. We engineered a protease-degradable poly(ethylene glycol) (PEG) synthetic hydrogel functionalized with a triple helical, α2ß1 integrin-specific peptide (GFOGER) as a BMP-2 delivery vehicle. GFOGER-functionalized hydrogels lacking BMP-2 directed human stem cell differentiation and produced significant enhancements in bone repair within a critical-sized bone defect compared to RGD hydrogels or empty defects. GFOGER functionalization was crucial to the BMP-2-dependent healing response. Importantly, these engineered hydrogels outperformed the current clinical carrier in repairing non-healing bone defects at low BMP-2 doses. GFOGER hydrogels provided sustained in vivo release of encapsulated BMP-2, increased osteoprogenitor localization in the defect site, enhanced bone formation and induced defect bridging and mechanically robust healing at low BMP-2 doses which stimulated almost no bone regeneration when delivered from collagen sponges. These findings demonstrate that GFOGER hydrogels promote bone regeneration in challenging defects with low delivered BMP-2 doses and represent an effective delivery vehicle for protein therapeutics with translational potential.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Regeneración Ósea/efectos de los fármacos , Técnicas de Transferencia de Gen , Hidrogeles/farmacología , Integrina alfa2beta1/química , Animales , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea/fisiología , Huesos/citología , Huesos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Colágeno/química , Colágeno/farmacología , Humanos , Hidrogeles/química , Masculino , Células Madre Mesenquimatosas , Ratones , Osteogénesis/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ingeniería de Tejidos , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...