Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(20)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38814008

RESUMEN

Sire is a Python/C++ library that is used both to prototype new algorithms and as an interoperability engine for exchanging information between molecular simulation programs. It provides a collection of file parsers and information converters that together make it easier to combine and leverage the functionality of many other programs and libraries. This empowers researchers to use sire to write a single script that can, for example, load a molecule from a PDBx/mmCIF file via Gemmi, perform SMARTS searches via RDKit, parameterize molecules using BioSimSpace, run GPU-accelerated molecular dynamics via OpenMM, and then display the resulting dynamics trajectory in a NGLView Jupyter notebook 3D molecular viewer. This functionality is built on by BioSimSpace, which uses sire's molecular information engine to interconvert with programs such as GROMACS, NAMD, Amber, and AmberTools for automated molecular parameterization and the running of molecular dynamics, metadynamics, and alchemical free energy workflows. Sire comes complete with a powerful molecular information search engine, plus trajectory loading and editing, analysis, and energy evaluation engines. This, when combined with an in-built computer algebra system, gives substantial flexibility to researchers to load, search for, edit, and combine molecular information from multiple sources and use that to drive novel algorithms by combining functionality from other programs. Sire is open source (GPL3) and is available via conda and at a free Jupyter notebook server at https://try.openbiosim.org. Sire is supported by the not-for-profit OpenBioSim community interest company.

2.
J Chem Theory Comput ; 19(12): 3686-3704, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37285579

RESUMEN

Alchemical absolute binding free energy calculations are of increasing interest in drug discovery. These calculations require restraints between the receptor and ligand to restrict their relative positions and, optionally, orientations. Boresch restraints are commonly used, but they must be carefully selected in order to sufficiently restrain the ligand and to avoid inherent instabilities. Applying multiple distance restraints between anchor points in the receptor and ligand provides an alternative framework without inherent instabilities which may provide convergence benefits by more strongly restricting the relative movements of the receptor and ligand. However, there is no simple method to calculate the free energy of releasing these restraints due to the coupling of the internal and external degrees of freedom of the receptor and ligand. Here, a method to rigorously calculate free energies of binding with multiple distance restraints by imposing intramolecular restraints on the anchor points is proposed. Absolute binding free energies for the human macrophage migration inhibitory factor/MIF180, system obtained using a variety of Boresch restraints and rigorous and nonrigorous implementations of multiple distance restraints are compared. It is shown that several multiple distance restraint schemes produce estimates in good agreement with Boresch restraints. In contrast, calculations without orientational restraints produce erroneously favorable free energies of binding by up to approximately 4 kcal mol-1. These approaches offer new options for the deployment of alchemical absolute binding free energy calculations.


Asunto(s)
Simulación de Dinámica Molecular , Humanos , Termodinámica , Ligandos , Entropía , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...