Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Nature ; 628(8006): 42-43, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570714
2.
J Biomech ; 166: 112023, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447429

RESUMEN

In locomotion, the relative phasing of the limbs changes with speed and provides valuable insight to neuromuscular control of gait. At present, it is unknown if individuals trained in sprinting coordinate their limbs differently than runners from other athletic backgrounds. Therefore, we aimed to characterize the effects of speed and skill on lower limb coordination. Twenty-five physically active (PA) and fifteen track and field (TF) athletes performed 40 m running trials at self-selected speeds, from jogging to maximal sprinting. We measured lower limb kinematics during steady-speed running, and quantified coordination using continuous relative phase (CRP) methods for interlimb pairs (Thigh-Thigh, Shank-Shank) and intralimb pairs (Shank-Thigh). Regression techniques showed between-group differences in scaling of coordination with speed during the stance phase, such that coordination was significantly more antiphase during jogging and running speeds in TF. During flight the scaling between groups was similar, but there were persistent and significant differences in coordination across all speeds. Comparing only the maximal speed trials, we found interlimb coordination was significantly more antiphase for TF in both stance and flight. In all cases, Shank-Shank coordination showed the largest between-group differences. Our results demonstrate the importance of interlimb coordination at maximal sprint speed, particularly during the flight phase and between shank segments. Between-group differences in coordination at slower speeds suggest a selective tuning of coordination in trained runners. We speculate differences in limb coordination are due to acquired motor patterns from optimizing forward velocity and its mechanical determinants, which differ particularly during flight/swing and between shank segments.


Asunto(s)
Extremidad Inferior , Carrera , Humanos , Pierna , Marcha , Muslo , Fenómenos Biomecánicos
3.
Org Biomol Chem ; 22(5): 1018-1022, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38197449

RESUMEN

Aryl radicals are intermediates in many reactions, but determining their presence unambiguously is often challenging. As we recently reported, reaction of 2-iodo-1,3-dimethylbenzene (7) in benzene with KOtBu and a suitable organic additive, leads to a base-induced homolytic aromatic substitution (BHAS) coupling reaction giving 2,6-dimethylbiphenyl (12) and biphenyl (3) as coupled products, together with xylene (13). In this case, biphenyl arises from a radical translocation and is the major coupling product. This paper now quantitatively investigates that reaction, which shows a very similar ratio for 3 : 12 [ca. 4 : 1] when using different sources of radical initiation. Deuterium isotope studies provide detailed mechanistic support for the proposed mechanism; when carried out in C6D6vs. C6H6, the reaction is characterised by a strong isotope effect for formation of 3-d10vs. 3, but not for formation of 12-d5vs. 12. These distinctive properties mean that the transformation can act as an assay for aryl radicals. An advantage of such a BHAS process is its sensitivity, since it involves a chain reaction that can amplify radical activity.

4.
J Am Chem Soc ; 145(38): 20849-20858, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37713365

RESUMEN

Palladium salts and complexes were tested separately and in the presence of added ligands as potential sources of aryl radicals in ground-state coupling reactions of aryl halide with arenes under basic conditions (KOtBu). Our recently developed assay for aryl radicals was employed to test for aryl radicals. In this assay, aryl radicals derived from the test substrate, 1-iodo-2,6-dimethylbenzene 7, undergo base-promoted homolytic aromatic substitution (BHAS) with benzene to produce 2,6-dimethylbiphenyl 8 and biphenyl 9 in an approximately 1:4 ratio as well as m-xylene 10. The biphenyl arises from a diagnostic radical transfer reaction with the solvent benzene. Using substrate 7 with a range of Pd sources as potential initiators led to formation of 8, 9, and 10 in varying amounts. However, when any one of a range of diphosphinoferrocenes (e.g., dppf or dippf) or BINAP or the monophosphine, diphenylphosphinoferrocene, was added as a ligand to Pd(OAc)2, the ratio of [2,6-dimethylbiphenyl 8: biphenyl 9] moved decisively to that expected from the BHAS (radical) pathway. Further studies were conducted with dppf. When dppf was added to each of the other Pd sources, the ratio of coupled products was also diverted to that expected for radical BHAS chemistry. Deuterium isotope studies and radical trap experiments provide strong additional support for the involvement of aryl radicals. Accordingly, under these ground-state conditions, palladium sources, in the presence of defined ligands, convert aryl iodides to aryl radicals. A rationale is proposed for these observations.

5.
J Hum Kinet ; 87: 1-9, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37229404

RESUMEN

Horizontal foot speed is fundamental for running synchronization and stability, and may also be important for sprinting performance. In this investigation, we quantified the following during steady-speed running: (a) peak forward foot speed during the swing phase, (b) backward foot speed at touchdown, and (c) ground speed difference (GSD), i.e., the difference between forward running speed and backward foot speed at touchdown. We hypothesized that forward and backward foot speed would be significantly and positively correlated with top speed, and that GSD would be significantly and negatively correlated with top speed. Participants (20 male, 20 female) completed 40-m submaximal and maximal-effort running trials, with kinematic data collected from 31-39 m. Across top speed trials, forward foot speed (r = 0.90, p < 0.001) and backward foot speed (r = 0.85, p < 0.001) were significantly and positively correlated with running speed. However, counter to expectations, GSD values slightly increased with top speed (r = 0.36, p = 0.027). These findings indicate that forward and backward foot speeds are important variables for sprinting performance, but faster runners may not necessarily exhibit lower GSD values at top speed.

6.
J Sports Sci ; 41(4): 326-332, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37183445

RESUMEN

Lower-limb wearable resistance (WR) facilitates targeted resistance-based training during sports-specific movement tasks. The purpose of this study was to determine the effect of two different WR placements (thigh and shank) on joint kinematics during the acceleration phase of sprint running. Eighteen participants completed maximal effort sprints while unloaded and with 2% body mass thigh- or shank-placed WR. The main findings were as follows: 1) the increase to 10 m sprint time was small with thigh WR (effect size [ES] = 0.24), and with shank WR, the increase was also small but significant (ES = 0.33); 2) significant differences in peak joint angles between the unloaded and WR conditions were small (ES = 0.23-0.38), limited to the hip and knee joints, and <2° on average; 3) aside from peak hip flexion angles, no clear trends were observed in individual difference scores; and, 4) thigh and shank WR produced similar reductions in average hip flexion and extension angular velocities. The significant overload to hip flexion and extension velocity with both thigh- and shank-placed WR may be beneficial to target the flexion and extension actions associated with fast sprint running.


Asunto(s)
Entrenamiento de Fuerza , Carrera , Dispositivos Electrónicos Vestibles , Humanos , Extremidad Inferior , Aceleración , Fenómenos Biomecánicos
7.
Biofilm ; 5: 100108, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36938359

RESUMEN

Urine, humidity condensate, and other sources of non-potable water are processed onboard the International Space Station (ISS) by the Water Recovery System (WRS) yielding potable water. While some means of microbial control are in place, including a phosphoric acid/hexavalent chromium urine pretreatment solution, many areas within the WRS are not available for routine microbial monitoring. Due to refurbishment needs, two flex lines from the Urine Processor Assembly (UPA) within the WRS were removed and returned to Earth. The water from within these lines, as well as flush water, was microbially evaluated. Culture and culture-independent analysis revealed the presence of Burkholderia, Paraburkholderia, and Leifsonia. Fungal culture also identified Fusarium and Lecythophora. Hybrid de novo genome analysis of the five distinct Burkholderia isolates identified them as B. contaminans, while the two Paraburkholderia isolates were identified as P. fungorum. Chromate-resistance gene clusters were identified through pangenomic analysis that differentiated these genomes from previously studied isolates recovered from the point-of-use potable water dispenser and/or current NCBI references, indicating that unique populations exist within distinct niches in the WRS. Beyond genomic analysis, fixed samples directly from the lines were imaged by environmental scanning electron microscopy, which detailed networks of fungal-bacterial biofilms. This is the first evidence of biofilm formation within flex lines from the UPA onboard the ISS. For all bacteria isolated, biofilm potential was further characterized, with the B. contaminans isolates demonstrating the most considerable biofilm formation. Moreover, the genomes of the B. contaminans revealed secondary metabolite gene clusters associated with quorum sensing, biofilm formation, antifungal compounds, and hemolysins. The potential production of these gene cluster metabolites was phenotypically evaluated through biofilm, bacterial-fungal interaction, and hemolytic assays. Collectively, these data identify the UPA flex lines as a unique ecological niche and novel area of biofilm growth within the WRS. Further investigation of these organisms and their resistance profiles will enable engineering controls directed toward biofilm prevention in future space station water systems.

8.
JCI Insight ; 7(23)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36477362

RESUMEN

BACKGROUNDPrimary Sjögren's syndrome (pSS) is characterized by B cell hyperactivity and elevated B-lymphocyte stimulator (BLyS). Anti-BLyS treatment (e.g., belimumab) increases peripheral memory B cells; decreases naive, activated, and plasma B cell subsets; and increases stringency on B cell selection during reconstitution. Anti-CD20 therapeutics (e.g., rituximab) bind and deplete CD20-expressing B cells in circulation but are less effective in depleting tissue-resident CD20+ B cells. Combined, these 2 mechanisms may achieve synergistic effects.METHODSThis 68-week, phase II, double-blind study (GSK study 201842) randomized 86 adult patients with active pSS to 1 of 4 arms: placebo, s.c. belimumab, i.v. rituximab, or sequential belimumab + rituximab.RESULTSOverall, 60 patients completed treatment and follow-up until week 68. The incidence of adverse events (AEs) and drug-related AEs was similar across groups. Infections/infestations were the most common AEs, and no serious infections of special interest occurred. Near-complete depletion of minor salivary gland CD20+ B cells and a greater and more sustained depletion of peripheral CD19+ B cells were observed with belimumab + rituximab versus monotherapies. With belimumab + rituximab, reconstitution of peripheral B cells occurred, but it was delayed compared with rituximab. At week 68, mean (± standard error) total EULAR Sjögren's syndrome disease activity index scores decreased from 11.0 (1.17) at baseline to 5.0 (1.27) for belimumab + rituximab and 10.4 (1.36) to 8.6 (1.57) for placebo.CONCLUSIONThe safety profile of belimumab + rituximab in pSS was consistent with the monotherapies. Belimumab + rituximab induced enhanced salivary gland B cell depletion relative to the monotherapies, potentially leading to improved clinical outcomes.TRIAL REGISTRATIONClinicalTrials.gov NCT02631538.FUNDINGFunding was provided by GSK.


Asunto(s)
Síndrome de Sjögren , Humanos , Rituximab/uso terapéutico , Síndrome de Sjögren/tratamiento farmacológico
10.
Front Sports Act Living ; 4: 945688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903404

RESUMEN

Sprinting performance is critical for a variety of sports and competitive activities. Prior research has demonstrated correlations between the limits of initial acceleration and maximum velocity for athletes of different sprinting abilities. Our perspective is that hip torque is a mechanistic link between these performance limits. A theoretical framework is presented here that provides estimates of sprint acceleration capability based on thigh angular acceleration and hip torque during the swing phase while running at maximum velocity. Performance limits were calculated using basic anthropometric values (body mass and leg length) and maximum velocity kinematic values (contact time, thigh range of motion, and stride frequency) from previously published sprint data. The proposed framework provides a mechanistic link between maximum acceleration and maximum velocity, and also explains why time constant values (τ, ratio of the velocity limit to acceleration limit) for sprint performance curves are generally close to one-second even for athletes with vastly different sprinting abilities. This perspective suggests that specific training protocols targeted to improve thigh angular acceleration and hip torque capability will benefit both acceleration and maximum velocity phases of a sprint.

11.
PLoS One ; 17(5): e0265955, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507583

RESUMEN

Damage from infestations of Lymantria dispar L. in oak-dominated stands and southern pine beetle (Dendroctonus frontalis Zimmermann) in pine-dominated stands have far exceeded impacts of other disturbances in forests of the mid-Atlantic Coastal Plain over the last two decades. We used forest census data collected in undisturbed and insect-impacted stands combined with eddy covariance measurements made pre- and post-disturbance in oak-, mixed and pine-dominated stands to quantify how these infestations altered forest composition, structure and carbon dynamics in the Pinelands National Reserve of southern New Jersey. In oak-dominated stands, multi-year defoliation during L. dispar infestations resulted in > 40% mortality of oak trees and the release of pine saplings and understory vegetation, while tree mortality was minimal in mixed and pine-dominated stands. In pine-dominated stands, southern pine beetle infestations resulted in > 85% mortality of pine trees but had minimal effect on oaks in upland stands or other hardwoods in lowland stands, and only rarely infested pines in hardwood-dominated stands. Because insect-driven disturbances are both delaying and accelerating succession in stands dominated by a single genus but having less effect in mixed-composition stands, long-term disturbance dynamics are favoring the formation and persistence of uneven age oak-pine mixedwood stands. Changes in forest composition may have little impact on forest productivity and evapotranspiration; although seasonal patterns differ, with highest daily rates of net ecosystem production (NEP) during the growing season occurring in an oak-dominated stand and lowest in a pine-dominated stand, integrated annual rates of NEP are similar among oak-, mixed and pine-dominated stands. Our research documents the formation of mixedwood stands as a consequence of insect infestations in the mid-Atlantic region and suggests that managing for mixedwood stands could reduce damage to forest products and provide greater continuity in ecosystem functioning.


Asunto(s)
Escarabajos , Pinus , Quercus , Animales , Ecosistema , Bosques , Árboles
12.
Gait Posture ; 94: 114-118, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276457

RESUMEN

BACKGROUND: Synchronized arm and leg motion are characteristic of human running. Leg motion is an obvious gait requirement, but arm motion is not, and its functional contribution to running performance is not known. Because arm-leg coupling serves to reduce rotation about the body's vertical axis, arm motion may be necessary to achieve the body positions that optimize ground force application and performance. RESEARCH QUESTION: Does restricting arm motion compromise performance in short sprints? METHODS: Sprint performance was measured in 17 athletes during normal and restricted arm motion conditions. Restriction was self-imposed via arm folding across the chest with each hand on the opposite shoulder. Track and field (TF, n = 7) and team sport (TS, n = 10) athletes completed habituation and performance test sessions that included six counterbalanced 30 m sprints: three each in normal and restricted arm conditions. TS participants performed standing starts in both conditions. TF participants performed block starts with extended arms for the normal condition and elevated platform support of the elbows for the crossed-arm, restricted condition. Instantaneous velocity was measured throughout each trial using a radar device. Average sprint performance times were compared using a Repeated Measures ANOVA with Tukey post-hoc tests for the entire group and for the TF and TS subgroups. RESULTS: The 30 m times were faster for normal vs. restricted arm conditions, but the between-condition difference was only 1.6% overall and < 0.10 s for the entire group (4.82 ± 0.46 s vs. 4.90 ± 0.46 s, respectively; p < 0.001) and both TF (4.55 ± 0.34 vs. 4.63 ± 0.32 s; p < 0.001) and TS subgroups (5.01 ± 0.46 vs. 5.08 ± 0.47 s; p < 0.001). SIGNIFICANCE: Our findings suggest that when arm motion is restricted, compensatory upper body motions can provide the rotational forces needed to offset the lower body angular momentum generated by the swinging legs. We conclude that restricting arm motion compromised short sprint running performance, but only marginally.


Asunto(s)
Rendimiento Atlético , Carrera , Aceleración , Atletas , Fenómenos Biomecánicos , Marcha , Humanos
13.
J Clin Transl Res ; 7(5): 682-686, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34778598

RESUMEN

BACKGROUND: There exists a paucity of anthropometric and kinematic data for elite United States (US) sprinters and further analysis of how these variables correlate with sprint velocity in practice is warranted. AIM: The purpose of this investigation was to examine the relationship of anthropometric and kinematic variables and practice sprint velocity of elite sprint athletes when separated by gender. METHODS: Participants included elite US 100 m sprinters (total: n=38, male: n=19, female: n=19). Inclusion criteria were participation in the 100 m semifinals or finals at the US Outdoor National Championships from 2015 to 2019. Anthropometric data and 300 Hz video during maximum velocity sprinting were collected during a practice session and video was digitized to determine the kinematic variables of interest. Relationships with maximal sprint velocity were assessed using Pearson's correlation coefficient and linear regression analysis. RESULTS: Males showed significant unadjusted relationships between practice velocity and step length (r=0.668; P=0.002), horizontal backward foot velocity at touchdown (r=0.459; P=0.048), and upper leg full extension angle (r=-0.585; P=0.009). Multiple regression analysis found that when adjusting for these three variables, step length was the only significant predictor of practice velocity in males which accounted for 44.6% of the variability in practice velocity in males. The females showed a significant relationship between practice velocity and step length (r=0.629; P=0.004) which accounted for 39.5% of the variability in practice velocity. CONCLUSION: These results provide researchers and coaches with important information regarding the anthropometric and kinematic variables related to elite top speed sprinting performance. RELEVANCE FOR PATIENTS: Training focused on increasing step length may be an efficient way to improve velocity in practice.

14.
Sports Biomech ; : 1-14, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34678124

RESUMEN

The hip joint and surrounding musculature must generate and withstand torque during the swing phase of running. Prior research has demonstrated that sagittal plane hip torque increases with speed, indicating that thigh angular acceleration likely increases in a similar manner and may be an important gait parameter. In this investigation, we modelled thigh angle vs. time data with a sine wave function, requiring inputs of thigh angular amplitude and stride frequency. This enabled a simple formula to model maximum thigh angular acceleration (αmax, rad/s2) during the swing phase of steady-speed running. A total of 40 participants (20 male, 20 female) completed submaximal and maximal 40 m running trials (n = 154 trials, speed range: 3.1-10.0 m/s), with kinematic data collected from 31-39 m. Thigh angle vs. time curves were well fit by a sine wave function (mean R2 > 0.94 across all trials) and modelled αmax was highly correlated with top speed (R2 = 0.81, p < 0.001). We conclude that thigh angular acceleration is an important parameter when examining running performance across a range of speeds and the simple method introduced here to model αmax may have practical utility for future examinations into high-speed running mechanics.

15.
J Strength Cond Res ; 35(5): 1187-1193, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33900253

RESUMEN

ABSTRACT: Walts, CT, Murphy, SM, Stearne, DJ, Rieger, RH, and Clark, KP. Effects of a flexible workout system on performance gains in collegiate athletes. J Strength Cond Res 35(5): 1187-1193, 2021-Although research on the topic of periodization is abundant, investigations into different flexible periodization strategies in collegiate athletes are limited. Furthermore, how state of readiness (SOR) and workout autonomy affect training improvements is largely unknown. Therefore, the purpose of this study was to determine if a flexible periodization (FP) program would elicit significantly greater performance gains compared with a nonflexible periodization (NP) program (significance set p ≤ 0.05). A total of 32 male and female intercollegiate lacrosse players completed performance measures of vertical jump, sprinting speed, change of direction, and strength in bench press and deadlift. After pretesting, subjects were matched and randomly assigned to either FP (n = 17, age = 19.4 ± 1.4 years, height = 1.72 ± 0.10 m, mass = 72.29 ± 13.73 kg) or NP (n = 15, age = 19.9 ± 1.5 years, height = 1.72 ± 0.08 m, mass = 71.68 ± 13.55 kg) training groups. Both groups trained 3 days per week for 8 weeks. The NP group completed all workout volume and intensity as prescribed by a certified strength and conditioning coach. However, the FP group modified workout volume and intensity based on a daily SOR questionnaire. Although appreciable pretest to posttest improvements were observed for the entire subject cohort, multivariate analysis of variance (ANOVA) and a series of ANOVA tests demonstrated no statistically significant between-group differences for pretest to posttest changes on any of the performance tests (range of p values: 0.17-0.95). Although FP does not seem to be more effective than NP for eliciting performance gains, it may provide greater opportunities for autonomy while eliciting equivalent improvement levels. Therefore, flexible periodization based on SOR may be a viable training strategy.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza , Adolescente , Adulto , Atletas , Femenino , Humanos , Masculino , Fuerza Muscular , Adulto Joven
16.
J Sports Sci ; 39(13): 1519-1527, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33583334

RESUMEN

This study determined the effects of two wearable resistance (WR) placements (i.e. thigh and shank) on horizontal force-velocity and impulse measures during sprint running acceleration. Eleven male athletes performed 50 m sprints either unloaded or with WR of 2% body mass attached to the thigh or shank. In-ground force platforms were used to measure ground reaction forces and determine dependent variables of interest. The main findings were: 1) increases in sprint times and reductions in maximum velocity were trivial to small when using thigh WR (0.00-1.93%) and small to moderate with shank WR (1.56-3.33%); 2) athletes maintained or significantly increased horizontal force-velocity mechanical variables with WR (effect size = 0.32-1.23), except for theoretical maximal velocity with thigh WR, and peak power, theoretical maximal velocity and maximal ratio of force with shank WR; 3) greater increases to braking and vertical impulses were observed with shank WR (2.72-26.3% compared to unloaded) than with thigh WR (2.17-12.1% compared to unloaded) when considering the entire acceleration phase; and, 4) no clear trends were observed in many of the individual responses. These findings highlight the velocity-specific nature of this resistance training method and provide insight into what mechanical components are overloaded by lower-limb WR.


Asunto(s)
Rendimiento Atlético/fisiología , Extremidad Inferior/fisiología , Entrenamiento de Fuerza/métodos , Carrera/fisiología , Dispositivos Electrónicos Vestibles , Aceleración , Adolescente , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Entrenamiento de Fuerza/instrumentación , Soporte de Peso/fisiología , Adulto Joven
17.
J Strength Cond Res ; 35(11): 3084-3089, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972825

RESUMEN

ABSTRACT: Cahill, MJ, Oliver, JL, Cronin, JB, Clark, KP, Cross, MR, and Lloyd, RS. Sled-push load-velocity profiling and implications for sprint training prescription in young athletes. J Strength Cond Res 35(11): 3084-3089, 2021-Resisted sled pushing is a popular method of sprint-specific training; however, little evidence exists to support the prescription of resistive loads in young athletes. The purpose of this study was to determine the reliability and linearity of the force-velocity relationship during sled pushing, as well as the amount of between-athlete variation in the load required to cause a decrement in maximal velocity (Vdec) of 25, 50, and 75%. Ninety (n = 90) high school, male athletes (age 16.9 ± 0.9 years) were recruited for the study. All subjects performed 1 unresisted and 3 sled-push sprints with increasing resistance. Maximal velocity was measured with a radar gun during each sprint and the load-velocity (LV) relationship established for each subject. A subset of 16 subjects examined the reliability of sled pushing on 3 separate occasions. For all individual subjects, the LV relationship was highly linear (r > 0.96). The slope of the LV relationship was found to be reliable (coefficient of variation [CV] = 3.1%), with the loads that cause a decrement in velocity of 25, 50, and 75% also found to be reliable (CVs = <5%). However, there was large between-subject variation (95% confidence interval) in the load that caused a given Vdec, with loads of 23-42% body mass (%BM) causing a Vdec of 25%, 45-85 %BM causing a Vdec of 50%, and 69-131 %BM causing a Vdec of 75%. The Vdec method can be reliably used to prescribe sled-push loads in young athletes, but practitioners should be aware that the load required to cause a given Vdec is highly individualized.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza , Carrera , Adolescente , Atletas , Humanos , Masculino , Prescripciones , Reproducibilidad de los Resultados , Entrenamiento de Fuerza/métodos
18.
J Strength Cond Res ; 35(7): 1856-1864, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30946271

RESUMEN

ABSTRACT: Clark, K, Cahill, M, Korfist, C, and Whitacre, T. Acute kinematic effects of sprinting with motorized assistance. J Strength Cond Res 35(7): 1856-1864, 2021-Although assisted sprinting has become popular for training maximum velocity, the acute effects are not fully understood. To examine this modality, 14 developmental male sprinters (age: 18.0 ± 2.5 years, 100-m personal best: 10.80 ± 0.31 seconds) performed maximal trials, both unassisted and assisted with a motorized towing device using a load of 7 kg (9.9 ± 0.9% body mass). Significant increases in maximum velocity (+9.4%, p ≤ 0.001, d = 3.28) occurred due to very large increases in stride length (+8.7%, p ≤ 0.001, d = 2.04) but not stride rate (+0.7%, p = 0.36, d = 0.11). Stride length increased due to small changes in distance traveled by the center of mass during ground contact (+3.7%, p ≤ 0.001, d = 0.40) combined with very large changes in distance traveled by the center of mass during flight (+13.1%, p ≤ 0.001, d = 2.62). Although stride rate did not demonstrate significant between-condition differences, the combination of contact and flight time was different. Compared to unassisted sprinting, assisted sprinting caused small but significant decreases in contact time (-5.2%, p ≤ 0.001, d = 0.49) and small but significant increases in flight time (+3.4%, p < 0.05, d = 0.58). Sprinting with motorized assistance elicited supramaximal velocities with decreased contact times, which may represent a neuromuscular stimulus for athletes attempting to enhance sprinting performance. Future research is needed to investigate the effects of this modality across various assistive loads and athletic populations, and to determine the longitudinal efficacy as a training method for improving maximum-velocity sprinting performance.


Asunto(s)
Rendimiento Atlético , Carrera , Adolescente , Adulto , Atletas , Fenómenos Biomecánicos , Humanos , Masculino , Viaje , Adulto Joven
19.
Biol Open ; 9(10)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32917763

RESUMEN

During high-speed running, lower limb vertical velocity at touchdown has been cited as a critical factor needed to generate large vertical forces. Additionally, greater leg angular velocity has also been correlated with increased running speeds. However, the association between these factors has not been comprehensively investigated across faster running speeds. Therefore, this investigation aimed to evaluate the relationship between running speed, thigh angular motion and vertical force determinants. It was hypothesized that thigh angular velocity would demonstrate a positive linear relationship with both running speed and lower limb vertical velocity at touchdown. A total of 40 subjects (20 males, 20 females) from various athletic backgrounds volunteered and completed 40 m running trials across a range of sub-maximal and maximal running speeds during one test session. Linear and angular kinematic data were collected from 31-39 m. The results supported the hypotheses, as across all subjects and trials (range of speeds: 3.1-10.0 m s-1), measures of thigh angular velocity demonstrated a strong positive linear correlation to speed (all R2>0.70, P<0.0001) and lower limb vertical velocity at touchdown (all R2=0.75, P<0.001). These findings suggest thigh angular velocity is strongly related to running speed and lower limb impact kinematics associated with vertical force application.


Asunto(s)
Fenómenos Biomecánicos , Marcha , Carrera , Muslo , Articulación de la Cadera , Humanos , Modelos Teóricos
20.
J Strength Cond Res ; 34(10): 2751-2759, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32773545

RESUMEN

Cahill, MJ, Oliver, JL, Cronin, JB, Clark, K, Cross, MR, Lloyd, RS, and Lee, JE. Influence of resisted sled-pull training on the sprint force-velocity profile of male high-school athletes. J Strength Cond Res 34(10): 2751-2759, 2020-Although resisted sled towing is a commonly used method of sprint-specific training, little uniformity exists around training guidelines for practitioners. The aim of this study was to assess the effectiveness of unresisted and resisted sled-pull training across multiple loads. Fifty-three male high-school athletes were assigned to an unresisted (n = 12) or 1 of 3 resisted groups: light (n = 15), moderate (n = 14), and heavy (n = 12) corresponding to loads of 44 ± 4 %BM, 89 ± 8 %BM, and 133 ± 12 %BM that caused a 25, 50, and 75% velocity decrement in maximum sprint speed, respectively. All subjects performed 2 sled-pull training sessions twice weekly for 8 weeks. Split times of 5, 10, and 20 m improved across all resisted groups (d = 0.40-1.04, p < 0.01) but did not improve with unresisted sprinting. However, the magnitude of the gains increased most within the heavy group, with the greatest improvement observed over the first 10 m (d ≥ 1.04). Changes in preintervention to postintervention force-velocity profiles were specific to the loading prescribed during training. Specifically, F0 increased most in moderate to heavy groups (d = 1.08-1.19); Vmax significantly decreased in the heavy group but increased in the unresisted group (d = 012-0.44); whereas, Pmax increased across all resisted groups (d = 0.39-1.03). The results of this study suggest that the greatest gains in short distance sprint performance, especially initial acceleration, are achieved using much heavier sled loads than previously studied in young athletes.


Asunto(s)
Atletas , Rendimiento Atlético/fisiología , Entrenamiento de Fuerza/métodos , Carrera/fisiología , Aceleración , Adolescente , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...