Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35744351

RESUMEN

The alkali-silica reaction can shorten concrete life due to expansive pressure build-up caused by reaction by-products, resulting in cracking. Understanding the role of the aggregate, as the main reactive component, is essential for understanding the underlying mechanisms of the alkali-silica reaction and thereby reducing, or even preventing, any potential damage. The present study aims to investigate the role of petrographic studies along with accelerated tests in predicting and determining the potential reactivity of aggregates, including granite, rhyodacite, limestone, and dolomite, with different geological characteristics in concrete. This study was performed under accelerated conditions in accordance with the ASTM C1260 and ASTM C1293 test methods. The extent of the alkali-silica reaction was assessed using a range of microanalysis techniques including optical microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray powder diffraction. The results showed that a calcium-rich aggregate with only a small quantity of siliceous component but with a higher porosity and water adsorption rate can lead to degradation due to the alkali-silica reaction, while dolomite aggregate, which is commonly considered a reactive aggregate, showed no considerable expansion during the conducted tests. The results also showed that rhyodacite samples, due to their glassy texture, the existence of strained quartz and quartz with undulatory extinction, as well as the presence of weathering minerals, have a higher alkali-reactivity potential than granite samples.

2.
Rev Sci Instrum ; 92(2): 023103, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648053

RESUMEN

The amount and distribution of water in nominally anhydrous minerals (NAMs) are usually determined by Fourier-transform infrared spectroscopy. This method is limited by the spot size of the beam to the study of samples with dimensions greater than a few micrometers. Here, we demonstrate the potential of using photoinduced force microscopy for the measurement of water in NAMs with samples sizes down to the nanometer scale with a study of water concentration across grain boundaries in forsterite. This development will enable the study of water speciation and diffusion in small-grained rock matrixes and allow a determination of the influence of nanoscale heterogeneity on the incorporation of water to NAMs.

3.
Water Res ; 185: 116245, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758792

RESUMEN

Unexplainable concrete softening below the water line has been observed by Sydney Water in their gravity sewer network, some of which is subjected to corrosion control methods using chemical ferrous chloride (FeCl2) dosing of the wastewater. We applied a combination of physical and chemical tools to determine the properties of the top 20 mm of concrete cores recovered from sewer pipes. These techniques consist of neutron tomographic imaging, scanning electron microscopy, hardness mapping, and pH profiling. Concrete cores were collected from roof (crown), tidal (wall) and below flow regions of gravity sewer pipes of Sydney Water's wastewater system from locations that received no treatment as well as locations dosed with FeCl2. All samples showed a degree of softening of the surface exposed to the sewerage with an associated depletion in calcium concentration and reduced pH in the same regions.


Asunto(s)
Materiales de Construcción , Aguas del Alcantarillado , Corrosión , Aguas Residuales
4.
Sensors (Basel) ; 19(8)2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31013886

RESUMEN

A feature extraction methodology based on lamb waves is developed for the non-invasive detection and prediction of the gap in concrete-metal composite structures, such as concrete-filled steel tubes. A popular feature extraction method, partial least squares regression, is utilised to predict the gaps. The data is collected using the piezoelectric transducers attached to the external surface of the metal of the composite structure. A piezoelectric actuator generates a sine burst signal, which propagates along the metal and is received by a piezoelectric sensor. The partial least squares regression is performed on the raw sensor signal to extract features and to determine the relationship between the signal and the gap size, which is then used to predict the gaps. The applicability of the developed system is tested on two concrete-metal composite specimens. The first specimen consisted of an aluminium plate and the second specimen consisted of a steel plate. This technique is able to detect and predict gaps as low as 0.1 mm. The results demonstrate the applicability of this technique for the gap and debonding detection in concrete-filled steel tubes, which are critical in determining the degree of composite action between concrete and metal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...