Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Hematol Oncol ; 11(1): 129, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400986

RESUMEN

BACKGROUND: This retrospective study was undertaken to determine if the plasma circulating tumor DNA (ctDNA) level and tumor biological features in patients with advanced solid tumors affected the detection of genomic alterations (GAs) by a plasma ctDNA assay. METHOD: Cell-free DNA (cfDNA) extracted from frozen plasma (N = 35) or fresh whole blood (N = 90) samples were subjected to a 62-gene hybrid capture-based next-generation sequencing assay FoundationACT. Concordance was analyzed for 51 matched FoundationACT and FoundationOne (tissue) cases. The maximum somatic allele frequency (MSAF) was used to estimate the amount of tumor fraction of cfDNA in each sample. The detection of GAs was correlated with the amount of cfDNA, MSAF, total tumor anatomic burden (dimensional sum), and total tumor metabolic burden (SUVmax sum) of the largest ten tumor lesions on PET/CT scans. RESULTS: FoundationACT detected GAs in 69 of 81 (85%) cases with MSAF > 0. Forty-two of 51 (82%) cases had ≥ 1 concordance GAs matched with FoundationOne, and 22 (52%) matched to the National Comprehensive Cancer Network (NCCN)-recommended molecular targets. FoundationACT also detected 8 unique molecular targets, which changed the therapy in 7 (88%) patients who did not have tumor rebiopsy or sufficient tumor DNA for genomic profiling assay. In all samples (N = 81), GAs were detected in plasma cfDNA from cancer patients with high MSAF quantity (P = 0.0006) or high tumor metabolic burden (P = 0.0006) regardless of cfDNA quantity (P = 0.2362). CONCLUSION: This study supports the utility of using plasma-based genomic assays in cancer patients with high plasma MSAF level or high tumor metabolic burden.


Asunto(s)
ADN Tumoral Circulante/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
2.
J Mol Diagn ; 20(5): 686-702, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29936259

RESUMEN

Genomic profiling of circulating tumor DNA derived from cell-free DNA (cfDNA) in blood can provide a noninvasive method for detecting genomic biomarkers to guide clinical decision making for cancer patients. We developed a hybrid capture-based next-generation sequencing assay for genomic profiling of circulating tumor DNA from blood (FoundationACT). High-sequencing coverage and molecular barcode-based error detection enabled accurate detection of genomic alterations, including short variants (base substitutions, short insertions/deletions) and genomic re-arrangements at low allele frequencies (AFs), and copy number amplifications. Analytical validation was performed on 2666 reference alterations. The assay achieved >99% overall sensitivity (95% CI, 99.1%-99.4%) for short variants at AF >0.5%, >95% sensitivity (95% CI, 94.2%-95.7%) for AF 0.25% to 0.5%, and 70% sensitivity (95% CI, 68.2%-71.5%) for AF 0.125% to 0.25%. No false positives were detected in 62 samples from healthy volunteers. Genomic alterations detected by FoundationACT demonstrated high concordance with orthogonal assays run on the same clinical cfDNA samples. In 860 routine clinical FoundationACT cases, genomic alterations were detected in cfDNA at comparable frequencies to tissue; for the subset of cases with temporally matched tissue and blood samples, 75% of genomic alterations and 83% of short variant mutations detected in tissue were also detected in cfDNA. On the basis of analytical validation results, FoundationACT has been approved for use in our Clinical Laboratory Improvement Amendments-certified/College of American Pathologists-accredited/New York State-approved laboratory.


Asunto(s)
ADN Tumoral Circulante/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Tumoral Circulante/sangre , Amplificación de Genes , Dosificación de Gen , Reordenamiento Génico , Humanos , Mutación INDEL/genética
3.
Clin Cancer Res ; 23(2): 379-386, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27489289

RESUMEN

PURPOSE: The clinical utility of next-generation sequencing (NGS) in breast cancer has not been demonstrated. We hypothesized that we could perform NGS of a new biopsy from patients with metastatic triple-negative breast cancer (TNBC) in a clinically actionable timeframe. EXPERIMENTAL DESIGN: We planned to enroll 40 patients onto a prospective study, Individualized Molecular Analyses Guide Efforts (IMAGE), to evaluate the feasibility of obtaining a new biopsy of a metastatic site, perform NGS (FoundationOne), and convene a molecular tumor board to formulate treatment recommendations within 28 days. We collected blood at baseline and at time of restaging to assess cell-free circulating plasma tumor DNA (ptDNA). RESULTS: We enrolled 26 women with metastatic TNBC who had received ≥1 line of prior chemotherapy, and 20 (77%) underwent NGS of a metastatic site biopsy. Twelve (60%) evaluable patients received treatment recommendations within 28 days of consent. The study closed after 20 patients underwent NGS, based on protocol-specified interim futility analysis. Three patients went on to receive genomically directed therapies. Twenty-four of 26 patients had genetic alterations successfully detected in ptDNA. Among 5 patients, 4 mutations found in tumor tissues were not identified in blood, and 4 mutations found in blood were not found in corresponding tumors. In 9 patients, NGS of follow-up blood samples showed 100% concordance with baseline blood samples. CONCLUSIONS: This study demonstrates challenges of performing NGS on prospective tissue biopsies in patients with metastatic TNBC within 28 days, while also highlighting the potential use of blood as a more time-efficient and less invasive method of mutational assessment. Clin Cancer Res; 23(2); 379-86. ©2016 AACR.


Asunto(s)
Biomarcadores de Tumor/sangre , ADN de Neoplasias/sangre , Proteínas de Neoplasias/genética , Neoplasias de la Mama Triple Negativas/sangre , Adulto , Anciano , Biopsia , Quimioterapia , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia , Proteínas de Neoplasias/biosíntesis , Medicina de Precisión , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
4.
Am J Hum Genet ; 94(3): 395-404, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24581739

RESUMEN

Genetic association studies of prostate and other cancers have identified a major risk locus at chromosome 8q24. Several independent risk variants at this locus alter transcriptional regulatory elements, but an affected gene and mechanism for cancer predisposition have remained elusive. The retrogene POU5F1B within the locus has a preserved open reading frame encoding a homolog of the master embryonic stem cell transcription factor Oct4. We find that 8q24 risk alleles are expression quantitative trait loci correlated with reduced expression of POU5F1B in prostate tissue and that predicted deleterious POU5F1B missense variants are also associated with risk of transformation. POU5F1 is known to be self-regulated by the encoded Oct4 transcription factor. We further observe that POU5F1 expression is directly correlated with POU5F1B expression. Our results suggest that a pathway critical to self-renewal of embryonic stem cells may also have a role in the origin of cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Adolescente , Adulto , Anciano , Alelos , Estudios de Casos y Controles , Núcleo Celular/metabolismo , Transformación Celular Neoplásica , Bases de Datos Genéticas , Células Madre Embrionarias/citología , Variación Genética , Genotipo , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Sistemas de Lectura Abierta , Sitios de Carácter Cuantitativo , Riesgo , Análisis de Secuencia de ADN , Transcripción Genética , Adulto Joven
5.
Cancer Res ; 74(1): 38-43, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24247717

RESUMEN

ENOX1 is a highly conserved NADH oxidase that helps to regulate intracellular nicotinamide adenine dinucleotide levels in many cell types, including endothelial cells. Pharmacologic and RNA interference (RNAi)-mediated suppression of ENOX1 impairs surrogate markers of tumor angiogenesis/vasculogenesis, providing support for the concept that ENOX1 represents an antiangiogenic druggable target. However, direct genetic evidence that demonstrates a role for ENOX1 in vascular development is lacking. In this study, we exploited a zebrafish embryonic model of development to address this question. Whole-mount in situ hybridization coupled with immunofluorescence performed on zebrafish embryos demonstrate that enox1 message and translated protein are expressed in most tissues, and its expression is enriched in blood vessels and heart. Morpholino-mediated suppression of Enox1 in Tg(fli1-eGFP) and Tg(flk1-eGFP) zebrafish embryos significantly impairs the development of vasculature and blood circulation. Using in vivo multiphoton microscopy, we show that morpholino-mediated knockdown of enox1 increases NADH levels, consistent with loss of enzyme. VJ115 is a small-molecule inhibitor of Enox1's oxidase activity shown to increase intracellular NADH in endothelial cells; we used VJ115 to determine if the oxidase activity was crucial for vascular development. We found that VJ115 suppressed vasculogenesis in Tg(fli1-eGFP) embryos and impaired circulation. Previously, it was shown that suppression of ENOX1 radiosensitizes proliferating tumor vasculature, a consequence of enhanced endothelial cell apoptosis. Thus, our current findings, coupled with previous research, support the hypothesis that ENOX1 represents a potential cancer therapy target, one that combines molecular targeting with cytotoxic sensitization.


Asunto(s)
Endotelio Vascular/embriología , Endotelio Vascular/crecimiento & desarrollo , Complejos Multienzimáticos/fisiología , NADH NADPH Oxidorreductasas/fisiología , Animales , Animales Modificados Genéticamente , Endotelio Vascular/enzimología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Neovascularización Fisiológica/fisiología , Pez Cebra
6.
Proc Natl Acad Sci U S A ; 111(1): 331-6, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344311

RESUMEN

Basement membrane, a specialized ECM that underlies polarized epithelium of eumetazoans, provides signaling cues that regulate cell behavior and function in tissue genesis and homeostasis. A collagen IV scaffold, a major component, is essential for tissues and dysfunctional in several diseases. Studies of bovine and Drosophila tissues reveal that the scaffold is stabilized by sulfilimine chemical bonds (S = N) that covalently cross-link methionine and hydroxylysine residues at the interface of adjoining triple helical protomers. Peroxidasin, a heme peroxidase embedded in the basement membrane, produces hypohalous acid intermediates that oxidize methionine, forming the sulfilimine cross-link. We explored whether the sulfilimine cross-link is a fundamental requirement in the genesis and evolution of epithelial tissues by determining its occurrence and evolutionary origin in Eumetazoa and its essentiality in zebrafish development; 31 species, spanning 11 major phyla, were investigated for the occurrence of the sulfilimine cross-link by electrophoresis, MS, and multiple sequence alignment of de novo transcriptome and available genomic data for collagen IV and peroxidasin. The results show that the cross-link is conserved throughout Eumetazoa and arose at the divergence of Porifera and Cnidaria over 500 Mya. Also, peroxidasin, the enzyme that forms the bond, is evolutionarily conserved throughout Metazoa. Morpholino knockdown of peroxidasin in zebrafish revealed that the cross-link is essential for organogenesis. Collectively, our findings establish that the triad-a collagen IV scaffold with sulfilimine cross-links, peroxidasin, and hypohalous acids-is a primordial innovation of the ECM essential for organogenesis and tissue evolution.


Asunto(s)
Membrana Basal/metabolismo , Evolución Biológica , Iminas/química , Compuestos de Azufre/química , Secuencia de Aminoácidos , Animales , Colágeno Tipo IV/química , Reactivos de Enlaces Cruzados/química , Drosophila melanogaster , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/química , Hemo/química , Espectrometría de Masas , Datos de Secuencia Molecular , Péptidos/química , Peroxidasa/química , Peroxidasas/química , Estructura Terciaria de Proteína , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido , Pez Cebra , Peroxidasina
7.
Trends Genet ; 29(10): 593-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23972387

RESUMEN

Exome sequencing is one of the most cost-efficient sequencing approaches for conducting genome research on coding regions. However, significant portions of the reads obtained in exome sequencing come from outside of the designed target regions. These additional reads are generally ignored, potentially wasting an important source of genomic data. There are three major types of unintentionally sequenced read that can be found in exome sequencing data: reads in introns and intergenic regions, reads in the mitochondrial genome, and reads originating in viral genomes. All of these can be used for reliable data mining, extending the utility of exome sequencing. Large-scale exome sequencing data repositories, such as The Cancer Genome Atlas (TCGA), the 1000 Genomes Project, National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project, and The Sequence Reads Archive, provide researchers with excellent secondary data-mining opportunities to study genomic data beyond the intended target regions.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Exoma/genética , Análisis de Secuencia de ADN , ADN/genética , Genoma Mitocondrial , Humanos , Polimorfismo de Nucleótido Simple
8.
Nature ; 475(7356): 348-52, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21776081

RESUMEN

The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.


Asunto(s)
Genoma Bacteriano/genética , Genoma Humano/genética , Genómica/instrumentación , Genómica/métodos , Semiconductores , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos , Escherichia coli/genética , Humanos , Luz , Masculino , Rhodopseudomonas/genética , Vibrio/genética
9.
BMC Genomics ; 11: 477, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20716356

RESUMEN

BACKGROUND: Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. RESULTS: We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. CONCLUSIONS: Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.


Asunto(s)
Cartilla de ADN/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Neurospora crassa/genética , Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Micelio/efectos de los fármacos , Micelio/enzimología , Micelio/genética , Neurospora crassa/efectos de los fármacos , Neurospora crassa/crecimiento & desarrollo , Nitrógeno/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN de Hongos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa/efectos de los fármacos , Transcripción Reversa/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Análisis de Secuencia de ARN
11.
Genetics ; 167(4): 1663-75, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15342506

RESUMEN

The impact of ploidy on adaptation is a central issue in evolutionary biology. While many eukaryotic organisms exist as diploids, with two sets of gametic genomes residing in the same nucleus, most basidiomycete fungi exist as dikaryons in which the two genomes exist in separate nuclei that are physically paired and that divide in a coordinated manner during hyphal extension. To determine if haploid monokaryotic and dikaryotic mycelia adapt to novel environments under natural selection, we serially transferred replicate populations of each ploidy state on minimal medium for 18 months (approximately 13,000 generations). Dikaryotic mycelia responded to selection with increases in growth rate, while haploid monokaryotic mycelia did not. To determine if the haploid components of the dikaryon adapt reciprocally to one another's presence over time, we recovered the intact haploid components of dikaryotic mycelia at different time points (without meiosis) and mated them with nuclei of different evolutionary histories. We found evidence for coadaptation between nuclei in one dikaryotic line, in which a dominant deleterious mutation in one nucleus was followed by a compensatory mutation in the other nucleus; the mutant nuclei that evolved together had the best overall fitness. In other lines, nuclei had equal or higher fitness when paired with nuclei of other histories, indicating a heterozygote advantage. To determine if genetic exchange occurs between the two nuclei of a dikaryon, we developed a 24-locus genotyping system based on single nucleotide polymorphisms to monitor somatic exchange. We observed genetic exchange and recombination between the nuclei of several different dikaryons, resulting in genotypic variation in these mitotic cell lineages.


Asunto(s)
Evolución Molecular Dirigida , Schizophyllum/genética , Secuencia de Bases , Basidiomycota/genética , Cartilla de ADN , ADN de Hongos/genética , Cinética , Hibridación de Ácido Nucleico , Schizophyllum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...