Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nat Med ; 29(7): 1760-1774, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414897

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml-1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Vacuna BNT162 , ChAdOx1 nCoV-19 , Vacunación , Anticuerpos Antivirales
2.
Transpl Int ; 36: 11056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334011

RESUMEN

This analysis reports on the outcomes of two different steroid sparing immunosuppression protocols used in the management of 120 highly sensitised patients (HSPs) with cRF>85% receiving Alemtuzumab induction, 53 maintained on tacrolimus (FK) monotherapy and 67 tacrolimus plus mycophenolate mofetil (FK + MMF). There was no difference in the median cRF or mode of sensitisation between the two groups, although the FK + MMF cohort received more poorly matched grafts. There was no difference in one-year patient or allograft survival, however rejection free survival was inferior with FK monotherapy compared with FK + MMF at 65.4% and 91.4% respectively, p < 0.01. DSA-free survival was comparable. Whilst there was no difference in rates of BK between the cohorts, CMV-free survival was inferior in the FK + MMF group at 86.0% compared with 98.1% in the FK group, p = 0.026. One-year post-transplant diabetes free survival was 89.6% and 100.0% in the FK and FK + MMF group respectively, p = 0.027, the difference attributed to the use of prednisolone to treat rejection in the FK cohort, p = 0.006. We report good outcomes in HSPs utilising a steroid sparing protocol with Alemtuzumab induction and FK + MMF maintenance and provide granular data on immunological and infectious complications to inform steroid avoidance in these patient groups.


Asunto(s)
Inmunosupresores , Trasplante de Riñón , Humanos , Alemtuzumab/uso terapéutico , Inmunosupresores/uso terapéutico , Tacrolimus/uso terapéutico , Trasplante de Riñón/métodos , Terapia de Inmunosupresión/métodos , Esteroides , Ácido Micofenólico/uso terapéutico , Rechazo de Injerto/prevención & control , Supervivencia de Injerto
3.
Nat Commun ; 13(1): 7775, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522333

RESUMEN

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we perform longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identify transcriptomic and proteomic signatures of COVID-19 severity, and find distinct temporal molecular profiles in patients with severe disease. Supervised learning reveals that the plasma proteome is a superior indicator of clinical severity than the PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, is associated with a more severe clinical course. We observe that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19.


Asunto(s)
COVID-19 , Convalecencia , Trombosis , Humanos , Multiómica , SARS-CoV-2 , Leucocitos Mononucleares , Proteómica , Proteínas de la Membrana
4.
EClinicalMedicine ; 53: 101642, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36105874

RESUMEN

Background: Solid organ transplant recipients have attenuated immune responses to SARS-CoV-2 vaccines. In this study, we report on immune responses to 3rd- (V3) and 4th- (V4) doses of heterologous and homologous vaccines in a kidney transplant population. Methods: We undertook a single centre cohort study of 724 kidney transplant recipients prospectively screened for serological responses following 3 primary doses of a SARS-CoV2 vaccine. 322 patients were sampled post-V4 for anti-spike (anti-S), with 69 undergoing assessment of SARS-CoV-2 T-cell responses. All vaccine doses were received post-transplant, only mRNA vaccines were used for V3 and V4 dosing. All participants had serological testing performed post-V2 and at least once prior to their first dose of vaccine. Findings: 586/724 (80.9%) patients were infection-naïve post-V3; 141/2586 (24.1%) remained seronegative at 31 (21-51) days post-V3. Timing of vaccination in relation to transplantation, OR: 0.28 (0.15-0.54), p=0.0001; immunosuppression burden, OR: 0.22 (0.13-0.37), p<0.0001, and a diagnosis of diabetes, OR: 0.49 (0.32-0.75), p=0.001, remained independent risk factors for non-seroconversion. Seropositive patients post-V3 had greater anti-S if primed with BNT162b2 compared with ChAdOx1, p=0.001.Post-V4, 45/239 (18.8%) infection-naïve patients remained seronegative. De novo seroconversion post-V4 occurred in 15/60 (25.0%) patients. There was no difference in anti-S post-V4 by vaccine combination, p=0.50. T-cell responses were poor, with only 11/54 (20.4%) infection-naive patients having detectable T-cell responses post-V4, with no difference seen by vaccine type. Interpretation: A significant proportion of transplant recipients remain seronegative following 3- and 4- doses of SARS-CoV-2 vaccines, with poor T-cell responses, and are likely to have inadequate protection against infection. As such alternative strategies are required to provide protection to this vulnerable group. Funding: MW/PK received study support from Oxford Immunotec.

5.
Lancet Reg Health Eur ; 21: 100478, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36105885

RESUMEN

Background: People with end-stage kidney disease, including people on haemodialysis, are susceptible to greater COVID-19 related morbidity and mortality. This study compares the immunogenicity and clinical effectiveness of BNT162B2 versus ChAdOx1 in haemodialysis patients. Methods: In this observational cohort study, 1021 patients were followed-up from time of vaccination until December 2021. All patients underwent weekly RT-PCR screening. Patients were assessed for nucleocapsid(anti-NP) and spike(anti-S) antibodies at timepoints after second(V2) and third(V3) vaccinations. 191 patients were investigated for T-cell responses. Vaccine effectiveness (VE) for prevention of infection, hospitalisation and mortality was evaluated using the formula VE=(1-adjustedHR)x100. Findings: 45.7% (467/1021) had evidence of prior infection. There was no difference in the proportion of infection-naïve patients who seroconverted by vaccine type, but median anti-S antibody titres were higher post-BNT162b2 compared with ChAdOx1; 462(152-1171) and 78(20-213) BAU/ml respectively, p<0.001.  Concomitant immunosuppressant use was a risk factor for non-response, OR 0.12[95% CI 0.05-0.25] p<0.001.  Post-V3 (all BNT162b2), median anti-S antibody titres remained higher in those receiving BNT162b2 versus ChAdOx1 as primary doses; 2756(187-1246) and 1250(439-2635) BAU/ml respectively, p=0.003.Anti-S antibodies waned over time. Hierarchical levels of anti-S post-V2 predicted risk of infection; patients with no/low anti-S being at highest risk. VE for preventing infection, hospitalisation and death was 53% (95% CI 6-75), 77% (95% CI 30-92) and 93% (95% CI 59-99) respectively, with no difference seen by vaccine type. Interpretation: Serum anti-S concentrations predict risk of breakthrough infection. Anti-S responses vary dependent upon clinical features, infection history and vaccine type. Monitoring of serological responses may enable individualised approaches to vaccine boosters in at risk populations. Funding: National Institute for Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust and Imperial College London.

6.
Front Oncol ; 12: 973576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091141

RESUMEN

Traditional studies using cancer cell lines are often performed on a two-dimensional (2D) cell culture model with a low success rate of translating to Phase I or Phase II clinical studies. In comparison, with the advent of developments three-dimensional (3D) cell culture has been championed as the latest cellular model system that better mimics in vivo conditions and pathological conditions such as cancer. In comparison to biospecimens taken from in vivo tissue, the details of gene expression of 3D culture models are largely undefined, especially in mesothelioma - an aggressive cancer with very limited effective treatment options. In this study, we examined the veracity of the 3D mesothelioma cell culture model to study cell-to-cell interaction, gene expression and drug response from 3D cell culture, and compared them to 2D cell and tumor samples. We confirmed via SEM analysis that 3D cells grown using the spheroid methods expressed highly interconnected cell-to-cell junctions. The 3D spheroids were revealed to be an improved mini-tumor model as indicated by the TEM visualization of cell junctions and microvilli, features not seen in the 2D models. Growing 3D cell models using decellularized lung scaffold provided a platform for cell growth and infiltration for all cell types including primary cell lines. The most time-effective method was growing cells in spheroids using low-adhesive U-bottom plates. However, not every cell type grew into a 3D model using the the other methods of hanging drop or poly-HEMA. Cells grown in 3D showed more resistance to chemotherapeutic drugs, exhibiting reduced apoptosis. 3D cells stained with H&E showed cell-to-cell interactions and internal architecture that better represent that of in vivo patient tumors when compared to 2D cells. IHC staining revealed increased protein expression in 3D spheroids compared to 2D culture. Lastly, cells grown in 3D showed very different microRNA expression when compared to that of 2D counterparts. In conclusion, 3D cell models, regardless of which method is used. Showed a more realistic tumor microenvironment for architecture, gene expression and drug response, when compared to 2D cell models, and thus are superior preclinical cancer models.

8.
Sci Rep ; 12(1): 3330, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228550

RESUMEN

Antibody mediated rejection is a major cause of renal allograft loss. Circulating preformed donor specific antibodies (DSA) can result as a consequence of blood transfusion, pregnancy or prior transplantation. Current treatment strategies are limited due to partial or transient efficacy, adverse side-effects or patient unsuitability. Previous in vivo studies exploring autoimmune diseases have shown that spleen tyrosine kinase (SYK) signalling is involved in the development of pathogenic autoantibody. The role of SYK in allogenic antibody production is unknown, and we investigated this in a rodent model of sensitization, established by the transfusion of F344 whole blood into LEW rats. Two-week treatment of sensitized rats with selective SYK inhibitor fostamatinib strongly blocked circulating DSA production without affecting overall total immunoglobulin levels, and inhibition was sustained up to 5 weeks post-completion of the treatment regimen. Fostamatinib treatment did not affect mature B cell subset or plasma cell levels, which remained similar between non-treated controls, vehicle treated and fostamatinib treated animals. Our data indicate fostamatinib may provide an alternative therapeutic option for patients who are at risk of sensitization following blood transfusion while awaiting renal transplant.


Asunto(s)
Trasplante de Riñón , Animales , Anticuerpos , Rechazo de Injerto , Humanos , Trasplante de Riñón/efectos adversos , Oxazinas/farmacología , Oxazinas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ratas , Ratas Endogámicas F344 , Quinasa Syk , Donantes de Tejidos
9.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638565

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive malignancy with limited effective treatment options. Focal adhesion kinase (FAK) inhibitors have been shown to efficiently suppress MPM cell growth initially, with limited utility in the current clinical setting. In this study, we utilised a large collection of MPM cell lines and MPM tissue samples to study the role of E-cadherin (CDH1) and microRNA on the efficacy of FAK inhibitors in MPM. The immunohistochemistry (IHC) results showed that the majority of MPM FFPE samples exhibited either the absence of, or very low, E-cadherin protein expression in MPM tissue. We showed that MPM cells with high CDH1 mRNA levels exhibited resistance to the FAK inhibitor PND-1186. In summary, MPM cells that did not express CDH1 mRNA were sensitive to PND-1186, and MPM cells that retained CDH1 mRNA were resistant. A cell cycle analysis showed that PND-1186 induced cell cycle disruption by inducing the G2/M arrest of MPM cells. A protein-protein interaction study showed that EGFR is linked to the FAK pathway, and a target scan of the microRNAs revealed that microRNAs (miR-17, miR221, miR-222, miR137, and miR148) interact with EGFR 3'UTR. Transfection of MPM cells with these microRNAs sensitised the CHD1-expressing FAK-inhibitor-resistant MPM cells to the FAK inhibitor.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Mesotelioma Maligno/tratamiento farmacológico , Mesotelioma Maligno/genética , MicroARNs/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Mapas de Interacción de Proteínas
11.
Res Pract Thromb Haemost ; 5(6): e12582, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34532629

RESUMEN

BACKGROUND: A major clinical feature of severe coronavirus diease 2019 (COVID-19) is microvascular thrombosis linked to endothelial cell activation. Consistent with this, a number of studies have shown that patients with severe COVID-19 have highly elevated plasma levels of von Willebrand Factor (VWF) that may contribute to the prothrombotic phenotype. In the current study, we investigated the extent of endothelial activation in patients receiving hemodialysis who had either mild or severe COVID-19. METHODS: Plasma VWF, ADAMTS-13, angiopoietin-2 (Ang2), and syndecan-1 levels were determined by ELISA. The sialic acid content of VWF was investigated using a modified ELISA to measure elderberry bark lectin, specific for sialic acid residues, binding to VWF. RESULTS: Patients receiving hemodialysis with severe COVID-19 had significantly higher plasma levels of VWF and lower ADAMTS-13. VWF levels peaked and were sustained during the first 10 days after positive confirmation of infection. While Ang2 trended toward being higher in severely ill patients, this did not reach significance; however, severely ill patients had significantly higher soluble syndecan-1 levels, with high levels related to risk of death. Finally, higher VWF levels in severely ill patients were correlated with lower VWF sialic acid content. CONCLUSIONS: Severe COVID-19 in patients undergoing hemodialysis is associated with both acute and sustained activation of the endothelium, leading to alteration of the VWF/ADAMTS-13 axis. Lower VWF sialic acid content represents altered VWF processing and further confirms the disturbance caused to the endothelium in COVID-19.

12.
Ann Rheum Dis ; 80(10): 1322-1329, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34362747

RESUMEN

OBJECTIVE: There is an urgent need to assess the impact of immunosuppressive therapies on the immunogenicity and efficacy of SARS-CoV-2 vaccination. METHODS: Serological and T-cell ELISpot assays were used to assess the response to first-dose and second-dose SARS-CoV-2 vaccine (with either BNT162b2 mRNA or ChAdOx1 nCoV-19 vaccines) in 140 participants receiving immunosuppression for autoimmune rheumatic and glomerular diseases. RESULTS: Following first-dose vaccine, 28.6% (34/119) of infection-naïve participants seroconverted and 26.0% (13/50) had detectable T-cell responses to SARS-CoV-2. Immune responses were augmented by second-dose vaccine, increasing seroconversion and T-cell response rates to 59.3% (54/91) and 82.6% (38/46), respectively. B-cell depletion at the time of vaccination was associated with failure to seroconvert, and tacrolimus therapy was associated with diminished T-cell responses. Reassuringly, only 8.7% of infection-naïve patients had neither antibody nor T-cell responses detected following second-dose vaccine. In patients with evidence of prior SARS-CoV-2 infection (19/140), all mounted high-titre antibody responses after first-dose vaccine, regardless of immunosuppressive therapy. CONCLUSION: SARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppression, when assessed by a combination of serology and cell-based assays, although the response is impaired compared with healthy individuals. B-cell depletion following rituximab impairs serological responses, but T-cell responses are preserved in this group. We suggest that repeat vaccine doses for serological non-responders should be investigated as means to induce more robust immunological response.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Huésped Inmunocomprometido/inmunología , Inmunogenicidad Vacunal/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Enfermedades Autoinmunes/tratamiento farmacológico , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunosupresores/inmunología , Inmunosupresores/uso terapéutico , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Linfocitos T/inmunología
13.
Oxf Open Immunol ; 2(1): iqab014, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458849

RESUMEN

Protease inhibitors influence a range of innate immunity and inflammatory pathways. We quantified plasma concentrations of key anti-inflammatory protease inhibitors in chronic haemodialysis patients with coronavirus disease 2019 (COVID-19). The samples were collected early in the disease course to determine whether plasma protease inhibitor levels associated with the presence and severity of COVID-19. We used antibody-based immunoassays to measure plasma concentrations of C1 esterase inhibitor, alpha2-macroglobulin, antithrombin and inter-alpha-inhibitor heavy chain 4 (ITIH4) in 100 serial samples from 27 haemodialysis patients with COVID-19. ITIH4 was tested in two assays, one measuring intact ITIH4 and another also detecting any fragmented ITIH4 (total ITIH4). Control cohorts were 32 haemodialysis patients without COVID-19 and 32 healthy controls. We compared protease inhibitor concentration based on current and future COVID-19 severity and with C-reactive protein. Results were adjusted for repeated measures and multiple comparisons. Analysis of all available samples demonstrated lower plasma C1 esterase inhibitor and α2M and higher total ITIH4 in COVID-19 compared with dialysis controls. These differences were also seen in the first sample collected after COVID-19 diagnosis, a median of 4 days from diagnostic swab. Plasma ITIH4 levels were higher in severe than the non-severe COVID-19. Serum C-reactive protein correlated positively with plasma levels of antithrombin, intact ITIH4 and total ITIH4. In conclusion, plasma protease inhibitor concentrations are altered in COVID-19.

15.
Front Immunol ; 12: 671052, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995410

RESUMEN

We do not understand why non-white ethnicity and chronic kidney disease increase susceptibility to COVID-19. The lectin pathway of complement activation is a key contributor to innate immunity and inflammation. Concentrations of plasma lectin pathway proteins influence pathway activity and vary with ethnicity. We measured circulating lectin proteins in a multi-ethnic cohort of chronic kidney disease patients with and without COVID19 infection to determine if lectin pathway activation was contributing to COVID19 severity. We measured 11 lectin proteins in serial samples from a cohort of 33 patients with chronic kidney impairment and COVID19. Controls were single plasma samples from 32 patients on dialysis and 32 healthy individuals. We demonstrated multiple associations between recognition molecules and associated proteases of the lectin pathway and COVID-19, including COVID-19 severity. Some of these associations were unique to patients of Asian and White ethnicity. Our novel findings demonstrate that COVID19 infection alters the concentration of plasma lectin proteins and some of these changes were linked to ethnicity. This suggests a role for the lectin pathway in the host response to COVID-19 and suggest that variability within this pathway may contribute to ethnicity-associated differences in susceptibility to severe COVID-19.


Asunto(s)
COVID-19/sangre , Lectina de Unión a Manosa de la Vía del Complemento , Lectinas/sangre , Insuficiencia Renal Crónica/sangre , SARS-CoV-2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/etnología , COVID-19/inmunología , COVID-19/patología , Femenino , Humanos , Lectinas/inmunología , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/etnología , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/patología , SARS-CoV-2/inmunología
16.
Elife ; 102021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33704068

RESUMEN

End-stage kidney disease (ESKD) patients are at high risk of severe COVID-19. We measured 436 circulating proteins in serial blood samples from hospitalised and non-hospitalised ESKD patients with COVID-19 (n = 256 samples from 55 patients). Comparison to 51 non-infected patients revealed 221 differentially expressed proteins, with consistent results in a separate subcohort of 46 COVID-19 patients. Two hundred and three proteins were associated with clinical severity, including IL6, markers of monocyte recruitment (e.g. CCL2, CCL7), neutrophil activation (e.g. proteinase-3), and epithelial injury (e.g. KRT19). Machine-learning identified predictors of severity including IL18BP, CTSD, GDF15, and KRT19. Survival analysis with joint models revealed 69 predictors of death. Longitudinal modelling with linear mixed models uncovered 32 proteins displaying different temporal profiles in severe versus non-severe disease, including integrins and adhesion molecules. These data implicate epithelial damage, innate immune activation, and leucocyte-endothelial interactions in the pathology of severe COVID-19 and provide a resource for identifying drug targets.


COVID-19 varies from a mild illness in some people to fatal disease in others. Patients with severe disease tend to be older and have underlying medical problems. People with kidney failure have a particularly high risk of developing severe or fatal COVID-19. Patients with severe COVID-19 have high levels of inflammation, causing damage to tissues around the body. Many drugs that target inflammation have already been developed for other diseases. Therefore, to repurpose existing drugs or design new treatments, it is important to determine which proteins drive inflammation in COVID-19. Here, Gisby, Clarke, Medjeral-Thomas et al. measured 436 proteins in the blood of patients with kidney failure and compared the levels between patients who had COVID-19 to those who did not. This revealed that patients with COVID-19 had increased levels of hundreds of proteins involved in inflammation and tissue injury. Using a combination of statistical and machine learning analyses, Gisby et al. probed the data for proteins that might predict a more severe disease progression. In total, over 200 proteins were linked to disease severity, and 69 with increased risk of death. Tracking how levels of blood proteins changed over time revealed further differences between mild and severe disease. Comparing this data with a similar study of COVID-19 in people without kidney failure showed many similarities. This suggests that the findings may apply to COVID-19 patients more generally. Identifying the proteins that are a cause of severe COVID-19 ­ rather than just correlated with it ­ is an important next step that could help to select new drugs for severe COVID-19.


Asunto(s)
COVID-19/sangre , Fallo Renal Crónico/sangre , Fallo Renal Crónico/virología , Diálisis Renal/métodos , Anciano , Biomarcadores/sangre , COVID-19/mortalidad , COVID-19/virología , Femenino , Predicción , Hospitalización , Humanos , Fallo Renal Crónico/mortalidad , Fallo Renal Crónico/terapia , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pronóstico , Proteómica/métodos , Diálisis Renal/mortalidad , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
17.
Kidney Int ; 99(6): 1470-1477, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33774082

RESUMEN

Patients with end stage kidney disease receiving in-center hemodialysis (ICHD) have had high rates of SARS-CoV-2 infection. Following infection, patients receiving ICHD frequently develop circulating antibodies to SARS-CoV-2, even with asymptomatic infection. Here, we investigated the durability and functionality of the immune responses to SARS-CoV-2 infection in patients receiving ICHD. Three hundred and fifty-six such patients were longitudinally screened for SARS-CoV-2 antibodies and underwent routine PCR-testing for symptomatic and asymptomatic infection. Patients were regularly screened for nucleocapsid protein (anti-NP) and receptor binding domain (anti-RBD) antibodies, and those who became seronegative at six months were screened for SARS-CoV-2 specific T-cell responses. One hundred and twenty-nine (36.2%) patients had detectable antibody to anti-NP at time zero, of whom 127 also had detectable anti-RBD. Significantly, at six months, 71/111 (64.0%) and 99/116 (85.3%) remained anti-NP and anti-RBD seropositive, respectively. For patients who retained antibody, both anti-NP and anti-RBD levels were reduced significantly after six months. Eleven patients who were anti-NP seropositive at time zero, had no detectable antibody at six months; of whom eight were found to have SARS-CoV-2 antigen specific T cell responses. Independent of antibody status at six months, patients with baseline positive SARS-CoV-2 serology were significantly less likely to have PCR confirmed infection over the following six months. Thus, patients receiving ICHD mount durable immune responses six months post SARS-CoV-2 infection, with fewer than 3% of patients showing no evidence of humoral or cellular immunity.


Asunto(s)
Anticuerpos Antivirales/análisis , COVID-19/inmunología , Fallo Renal Crónico/terapia , Diálisis Renal/efectos adversos , SARS-CoV-2/inmunología , Prueba de COVID-19 , Femenino , Humanos , Inmunidad , Masculino , Pandemias , Reacción en Cadena de la Polimerasa , Reinfección , SARS-CoV-2/aislamiento & purificación , Pruebas Serológicas/métodos
19.
Kidney Med ; 3(1): 54-59.e1, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33521621

RESUMEN

RATIONALE & OBJECTIVE: A number of serologic tests for immunoglobulin G (IgG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are now commercially available, including multiple lateral flow immunoassays (LFIAs), which have the advantage of being inexpensive and easy to use, without the reliance on laboratory facilities. However, data on the development of humoral immunity to SARS-CoV-2 in patients with kidney disease is limited, and the utility of an LFIA to test for antibodies in these patients has not been assessed. STUDY DESIGN: Observational study. SETTING & PARTICIPANTS: 60 patients (40 hemodialysis and 20 kidney transplant recipients) with SARS-CoV-2 infection confirmed by viral reverse transcriptase-polymerase chain reaction (RT-PCR) testing and 88 historic negative-control samples (collected before September 2019). TEST: A commercially available LFIA to test for SARS-CoV-2 IgG in patients with infection confirmed by viral RT-PCR testing. OUTCOMES: Sensitivity and specificity of the LFIA to detect SARS-CoV-2 IgG in dialysis patients and transplant recipients. RESULTS: 56/58 (96.6%) patients (38/39 hemodialysis and 18/19 transplant recipients) tested positive for SARS-CoV-2 IgG. 5/7 (71.4%) patients who were negative on preliminary testing had detectable IgG when retested more than 21 days postdiagnosis. Median times to first and second tests after diagnosis were 17 (interquartile range, 15-20) and 35 (interquartile range, 30-39) days, respectively. Calculation of test characteristics gave sensitivity of 96.6% (95% CI, 88.3%-99.4%) and specificity of 97.7% (95% CI, 92.0-99.6%). LIMITATIONS: Possible exposure to other beta-coronaviruses that may cross-react with the antigen used in the LFIA cannot be excluded. CONCLUSIONS: Symptomatic dialysis patients and transplant recipients commonly develop an immune response against SARS-CoV-2 infection that can be detected using an LFIA. Used diligently, an LFIA could be used to help screen the dialysis populations or confirm exposure on a patient level, especially in facilities in which laboratory resources are limited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...