Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4048, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831368

RESUMEN

There is a growing interest in hybrid solid-state quantum systems where nuclear spins, interfaced to the electron spin qubit, are used as quantum memory or qubit register. These approaches require long nuclear spin coherence, which until now seemed impossible owing to the disruptive effect of the electron spin. Here we study InGaAs semiconductor quantum dots, demonstrating millisecond-long collective nuclear spin coherence even under inhomogeneous coupling to the electron central spin. We show that the underlying decoherence mechanism is spectral diffusion induced by a fluctuating electron spin. These results provide new understanding of the many-body coherence in central spin systems, required for development of electron-nuclear spin qubits. As a demonstration, we implement a conditional gate that encodes electron spin state onto collective nuclear spin coherence, and use it for a single-shot readout of the electron spin qubit with >99% fidelity.

2.
Opt Express ; 30(7): 11789-11796, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473114

RESUMEN

Magnetic fields can increase the intensity of terahertz (THz) waves due to changing the dipole moment direction using the Lorentz force. This study reports the increase in the THz-wave intensity generated by differential frequency mixing using commercial permanent magnets under exciton-excitation. While a weak magnetic field applied to a multiple quantum well increases the THz-wave intensity due to excitons, a strong field causes its decrease. According to the calculations, the increase is caused by the electron-hole separation due to the Lorentz force. Furthermore, the calculations suggest the importance of carrier acceleration to enhance the intensity. Importantly, the increase in the THz-wave intensity due to differential frequency mixing does not require a strong magnetic field and can be achieved with inexpensive commercially available magnets.

3.
Phys Rev Lett ; 125(4): 043603, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32794814

RESUMEN

Spectral filtering of resonance fluorescence is widely employed to improve single photon purity and indistinguishability by removing unwanted backgrounds. For filter bandwidths approaching the emitter linewidth, complex behavior is predicted due to preferential transmission of components with differing photon statistics. We probe this regime using a Purcell-enhanced quantum dot in both weak and strong excitation limits, finding excellent agreement with an extended sensor theory model. By changing only the filter width, the photon statistics can be transformed between antibunched, bunched, or Poissonian. Our results verify that strong antibunching and a subnatural linewidth cannot simultaneously be observed, providing new insight into the nature of coherent scattering.

4.
Phys Rev Lett ; 123(16): 167403, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702333

RESUMEN

Coherent scattering of light by a single quantum emitter is a fundamental process at the heart of many proposed quantum technologies. Unlike atomic systems, solid-state emitters couple to their host lattice by phonons. Using a quantum dot in an optical nanocavity, we resolve these interactions in both time and frequency domains, going beyond the atomic picture to develop a comprehensive model of light scattering from solid-state emitters. We find that even in the presence of a low-Q cavity with high Purcell enhancement, phonon coupling leads to a sideband that is completely insensitive to excitation conditions and to a nonmonotonic relationship between laser detuning and coherent fraction, both of which are major deviations from atomlike behavior.

5.
Light Sci Appl ; 8: 29, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886706

RESUMEN

A broadly tunable THz source is realized via difference frequency generation, in which an enhancement to χ(3) that is obtained via resonant excitation of III-V semiconductor quantum well excitons is utilized. The symmetry of the quantum wells (QWs) is broken by utilizing the built-in electric-field across a p-i-n junction to produce effective χ(2) processes, which are derived from the high χ(3). This χ(2) media exhibits an onset of nonlinear processes at ~4 W cm-2, thereby enabling area (and, hence, power) scaling of the THz emitter. Phase matching is realized laterally through normal incidence excitation. Using two collimated 130 mW continuous wave (CW) semiconductor lasers with ~1-mm beam diameters, we realize monochromatic THz emission that is tunable from 0.75 to 3 THz and demonstrate the possibility that this may span 0.2-6 THz with linewidths of ~20 GHz and efficiencies of ~1 × 10-5, thereby realizing ~800 nW of THz power. Then, transmission spectroscopy of atmospheric features is demonstrated, thereby opening the way for compact, low-cost, swept-wavelength THz spectroscopy.

6.
Nat Nanotechnol ; 13(9): 835-840, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30013218

RESUMEN

On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot-photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates.

7.
Form Methods Syst Des ; 50(2): 97-139, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28490835

RESUMEN

We present a computer-aided programming approach to concurrency. The approach allows programmers to program assuming a friendly, non-preemptive scheduler, and our synthesis procedure inserts synchronization to ensure that the final program works even with a preemptive scheduler. The correctness specification is implicit, inferred from the non-preemptive behavior. Let us consider sequences of calls that the program makes to an external interface. The specification requires that any such sequence produced under a preemptive scheduler should be included in the set of sequences produced under a non-preemptive scheduler. We guarantee that our synthesis does not introduce deadlocks and that the synchronization inserted is optimal w.r.t. a given objective function. The solution is based on a finitary abstraction, an algorithm for bounded language inclusion modulo an independence relation, and generation of a set of global constraints over synchronization placements. Each model of the global constraints set corresponds to a correctness-ensuring synchronization placement. The placement that is optimal w.r.t. the given objective function is chosen as the synchronization solution. We apply the approach to device-driver programming, where the driver threads call the software interface of the device and the API provided by the operating system. Our experiments demonstrate that our synthesis method is precise and efficient. The implicit specification helped us find one concurrency bug previously missed when model-checking using an explicit, user-provided specification. We implemented objective functions for coarse-grained and fine-grained locking and observed that different synchronization placements are produced for our experiments, favoring a minimal number of synchronization operations or maximum concurrency, respectively.

8.
Nanoscale Res Lett ; 10(1): 1049, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26303141

RESUMEN

A high-performance superluminescent light-emitting diode (SLD) based upon a hybrid quantum well (QW)/quantum dot (QD) active element is reported and is assessed with regard to the resolution obtainable in an optical coherence tomography system. We report on the appearance of strong emission from higher order optical transition from the QW in a hybrid QW/QD structure. This additional emission broadening method contributes significantly to obtaining a 3-dB linewidth of 290 nm centered at 1200 nm, with 2.4 mW at room temperature.

9.
Nano Lett ; 14(12): 6997-7002, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25381734

RESUMEN

Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g((2)) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters.

10.
Sci Rep ; 4: 4911, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24810097

RESUMEN

The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding.

11.
BMC Syst Biol ; 8 Suppl 1: S3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24565114

RESUMEN

BACKGROUND: Recent global genomic analyses identified 69 gene sets and 12 core signaling pathways genetically altered in pancreatic cancer, which is a highly malignant disease. A comprehensive understanding of the genetic signatures and signaling pathways that are directly correlated to pancreatic cancer survival will help cancer researchers to develop effective multi-gene targeted, personalized therapies for the pancreatic cancer patients at different stages. A previous work that applied a LASSO penalized regression method, which only considered individual genetic effects, identified 12 genes associated with pancreatic cancer survival. RESULTS: In this work, we integrate pathway information into pancreatic cancer survival analysis. We introduce and apply a doubly regularized Cox regression model to identify both genes and signaling pathways related to pancreatic cancer survival. CONCLUSIONS: Four signaling pathways, including Ion transport, immune phagocytosis, TGFß (spermatogenesis), regulation of DNA-dependent transcription pathways, and 15 genes within the four pathways are identified and verified to be directly correlated to pancreatic cancer survival. Our findings can help cancer researchers design new strategies for the early detection and diagnosis of pancreatic cancer.


Asunto(s)
Biología Computacional/métodos , Genes Relacionados con las Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de Señal , ADN/genética , ADN/metabolismo , Humanos , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Factores de Transcripción/metabolismo , Transcripción Genética
12.
Nat Commun ; 4: 1600, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23511465

RESUMEN

Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state systems. Here we demonstrate that the coherently generated single photons from a single self-assembled InAs quantum dot display mutual coherence with the excitation laser on a timescale exceeding 3 s. Exploiting this degree of mutual coherence, we synthesize near-arbitrary coherent photon waveforms by shaping the excitation laser field. In contrast to post-emission filtering, our technique avoids both photon loss and degradation of the single-photon nature for all synthesized waveforms. By engineering pulsed waveforms of single photons, we further demonstrate that separate photons generated coherently by the same laser field are fundamentally indistinguishable, lending themselves to the creation of distant entanglement through quantum interference.

13.
J Bioinform Comput Biol ; 9 Suppl 1: 63-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22144254

RESUMEN

Pancreatic cancer is the fourth leading cause of cancer deaths in the United States with five-year survival rates less than 5% due to rare detection in early stages. Identification of genes that are directly correlated to pancreatic cancer survival is crucial for pancreatic cancer diagnostics and treatment. However, no existing GWAS or transcriptome studies are available for addressing this problem. We apply lasso penalized Cox regression to a transcriptome study to identify genes that are directly related to pancreatic cancer survival. This method is capable of handling the right censoring effect of survival times and the ultrahigh dimensionality of genetic data. A cyclic coordinate descent algorithm is employed to rapidly select the most relevant genes and eliminate the irrelevant ones. Twelve genes have been identified and verified to be directly correlated to pancreatic cancer survival time and can be used for the prediction of future patient's survival.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias Pancreáticas/mortalidad , Análisis de Supervivencia , Transcriptoma , Algoritmos , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Pancreáticas/genética , Modelos de Riesgos Proporcionales , Tasa de Supervivencia
14.
Adv Physiol Educ ; 35(4): 427-37, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22139782

RESUMEN

As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York(1) collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions using an in silico model. The primary goal of the workshop was to cultivate student interest in computational modeling and analysis of complex systems by introducing them through lectures and laboratory activities to current research in cardiac modeling and by engaging them in a hands-on research experience. The success of the workshop lay in the exposure of the students to active researchers and experts in their fields, the use of hands-on activities to communicate important concepts, active engagement of the students in research, and explanations of the significance of results as the students generated them. The workshop content addressed how spiral waves of electrical activity are initiated in the heart and how different parameter values affect the dynamics of these reentrant waves. Spiral waves are clinically associated with tachycardia, when the waves remain stable, and with fibrillation, when the waves exhibit breakup. All in silico experiments were conducted by simulating a mathematical model of cardiac cells on graphics processing units instead of the standard central processing units of desktop computers. This approach decreased the run time for each simulation to almost real time, thereby allowing the students to quickly analyze and characterize the simulated arrhythmias. Results from these simulations, as well as some of the background and methodology taught during the workshop, is presented in this article along with the programming code and the explanations of simulation results in an effort to allow other teachers and students to perform their own demonstrations, simulations, and studies.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Gráficos por Computador , Simulación por Computador , Técnicas Electrofisiológicas Cardíacas , Sistema de Conducción Cardíaco/fisiopatología , Modelos Cardiovasculares , Fisiología/educación , Enseñanza/métodos , Arritmias Cardíacas/diagnóstico , Comprensión , Procesamiento Automatizado de Datos , Retroalimentación , Humanos , Aprendizaje , Encuestas y Cuestionarios , Factores de Tiempo
15.
BMC Bioinformatics ; 11 Suppl 7: S10, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21106117

RESUMEN

BACKGROUND: Recent studies have found that overexpression of the High-mobility group box-1 (HMGB1) protein, in conjunction with its receptors for advanced glycation end products (RAGEs) and toll-like receptors (TLRs), is associated with proliferation of various cancer types, including that of the breast and pancreatic. RESULTS: We have developed a rule-based model of crosstalk between the HMGB1 signaling pathway and other key cancer signaling pathways. The model has been simulated using both ordinary differential equations (ODEs) and discrete stochastic simulation. We have applied an automated verification technique, Statistical Model Checking, to validate interesting temporal properties of our model. CONCLUSIONS: Our simulations show that, if HMGB1 is overexpressed, then the oncoproteins CyclinD/E, which regulate cell proliferation, are overexpressed, while tumor suppressor proteins that regulate cell apoptosis (programmed cell death), such as p53, are repressed. Discrete, stochastic simulations show that p53 and MDM2 oscillations continue even after 10 hours, as observed by experiments. This property is not exhibited by the deterministic ODE simulation, for the chosen parameters. Moreover, the models also predict that mutations of RAS, ARF and P21 in the context of HMGB1 signaling can influence the cancer cell's fate - apoptosis or survival - through the crosstalk of different pathways.


Asunto(s)
Proteína HMGB1/metabolismo , Modelos Biológicos , Transducción de Señal , Apoptosis , Proliferación Celular , Simulación por Computador , Regulación Neoplásica de la Expresión Génica , Proteína HMGB1/genética , Mutación/genética , Neoplasias/fisiopatología , Proteínas Oncogénicas/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...