Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Hepatol ; 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29729369

RESUMEN

The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

2.
Lancet Gastroenterol Hepatol ; 3(2): 104-113, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29146439

RESUMEN

BACKGROUND: Paracetamol overdose is common but patient stratification is suboptimal. We investigated the usefulness of new biomarkers that have either enhanced liver specificity (microRNA-122 [miR-122]) or provide mechanistic insights (keratin-18 [K18], high mobility group box-1 [HMGB1], and glutamate dehydrogenase [GLDH]). The use of these biomarkers could help stratify patients for their risk of liver injury at hospital presentation. METHODS: Using data from two prospective cohort studies, we assessed the potential for biomarkers to stratify patients who overdose with paracetamol. We completed two independent prospective studies: a derivation study (MAPP) in eight UK hospitals and a validation study (BIOPAR) in ten UK hospitals. Patients in both cohorts were adults (≥18 years in England, ≥16 years in Scotland), were diagnosed with paracetamol overdose, and gave written informed consent. Patients who needed intravenous acetylcysteine treatment for paracetamol overdose had circulating biomarkers measured at hospital presentation. The primary endpoint was acute liver injury indicating need for continued acetylcysteine treatment beyond the standard course (alanine aminotransferase [ALT] activity >100 U/L). Receiver operating characteristic (ROC) curves, category-free net reclassification index (cfNRI), and integrated discrimination index (IDI) were applied to assess endpoint prediction. FINDINGS: Between June 2, 2010, and May 29, 2014, 1187 patients who required acetylcysteine treatment for paracetamol overdose were recruited (985 in the MAPP cohort; 202 in the BIOPAR cohort). In the derivation and validation cohorts, acute liver injury was predicted at hospital presentation by miR-122 (derivation cohort ROC-area under the curve [AUC] 0·97 [95% CI 0·95-0·98]), HMGB1 (0·95 [0·93-0·98]), and full-length K18 (0·95 [0·92-0·97]). Results were similar in the validation cohort (miR-122 AUC 0·97 [95% CI 0·95-0·99], HMGB1 0·98 [0·96-0·99], and full-length K18 0·93 [0·86-0·99]). A combined model of miR-122, HMGB1, and K18 predicted acute liver injury better than ALT alone (cfNRI 1·95 [95% CI 1·87-2·03], p<0·0001 in the MAPP cohort; 1·54 [1·08-2·00], p<0·0001 in the BIOPAR cohort). INTERPRETATION: Personalised treatment pathways could be developed by use of miR-122, HMGB1, and full-length K18 at hospital presentation for patient stratification. This prospective study supports their use for hepatic safety assessment of new medicines. FUNDING: Edinburgh and Lothians Health Foundation, UK Medical Research Council.


Asunto(s)
Acetaminofén/envenenamiento , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Sobredosis de Droga/diagnóstico , Medición de Riesgo/métodos , Acetaminofén/sangre , Acetilcisteína/uso terapéutico , Adulto , Antídotos/uso terapéutico , Sobredosis de Droga/complicaciones , Sobredosis de Droga/tratamiento farmacológico , Femenino , Glutamato Deshidrogenasa/sangre , Proteína HMGB1/sangre , Humanos , Queratina-18/sangre , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
3.
J Clin Transl Res ; 3(1): 199-211, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-30873474

RESUMEN

Liver safety biomarkers in current clinical practice are recognized to have certain shortcomings including their representation of general cell death and thus lacking in indicating the specific underlying mechanisms of injury. An informative panel of circulating- and imaging-based biomarkers, will allow a more complete understanding of the processes involved in the complex and multi-cellular disease of drug-induced liver injury; potentially preceding and therefore enabling prediction of disease progression as well as directing appropriate, existing or novel, therapeutic strategies. Several putative liver safety biomarkers are under investigation as discussed throughout this review, informing on a multitude of hepatocellular mechanisms including: early cell death (miR-122), necrosis (HMGB1, K18), apoptosis, (K18), inflammation (HMGB1), mitochondrial damage (GLDH, mtDNA), liver dysfunction (MRI, MSOT) and regeneration (CSF1). These biomarkers also hold translational value to provide important read across between in vitro-in vivo and clinical test systems. However, gaps in our knowledge remain requiring further focussed research and the ultimate qualification of key exploratory biomarkers. Relevance for patients: this novel multi-modal approach of assessing drug-induced liver injury could potentially enable better patient stratification and enhance treatment strategies. Ultimately, this could reduce unnecessary treatment, also decreasing hospital bed occupancy, whilst ensuring early and accurate identification of patients needing intervention.

4.
Toxicol Res (Camb) ; 6(4): 406-411, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090508

RESUMEN

microRNA-122 (miR-122) is increasingly being measured in pre-clinical and clinical settings due to greater sensitivity and hepatic specificity compared to the gold standard liver injury biomarker alanine aminotransferase (ALT). In pre-clinical studies, various culling methods can be employed prior to collection of blood samples, including lethal injection with pentobarbital sodium (Pentoject). However, little is known about whether such an approach could alter the circulating levels of miR-122 and compromise the interpretation of data. We therefore exposed C57BL/6J mice to saline or the model hepatotoxin paracetamol and collected blood samples pre-cull (via tail bleed) and post-cull (via cardiac puncture following exposure to a rising concentration of CO2 or intraperitoneal injection of Pentoject). Compared to pre-cull levels there was a significant increase in serum miR-122 level in mice culled with CO2 and, to a much greater extent, in mice culled with Pentoject. As a result, whilst the serum level of miR-122 increased in Pentoject-culled animals exposed to paracetamol, the higher level in saline-treated mice rendered this difference statistically non-significant, in contrast to findings in animals culled with CO2. ALT levels were unaffected by sacrifice method. Consistent with the in vivo findings, exposure of primary mouse hepatocytes to Pentoject provoked a rapid and concentration-dependent release of miR-122 into the culture media. Thus, for optimal design and interpretation of data from pre-clinical liver injury studies in which miR-122 is to be used as a biomarker, we recommend that blood samples are collected pre-cull whenever possible, and that lethal injection with Pentoject is avoided.

5.
Hepatology ; 64(5): 1699-1710, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27474782

RESUMEN

Acetaminophen (APAP) overdoses are of major clinical concern. Growing evidence underlines a pathogenic contribution of sterile postinjury inflammation in APAP-induced acute liver injury (APAP-ALI) and justifies development of anti-inflammatory therapies with therapeutic efficacy beyond the therapeutic window of the only current treatment option, N-acetylcysteine (NAC). The inflammatory mediator, high mobility group box 1 (HMGB1), is a key regulator of a range of liver injury conditions and is elevated in clinical and preclinical APAP-ALI. The anti-HMGB1 antibody (m2G7) is therapeutically beneficial in multiple inflammatory conditions, and anti-HMGB1 polyclonal antibody treatment improves survival in a model of APAP-ALI. Herein, we developed and investigated the therapeutic efficacy of a partly humanized anti-HMGB1 monoclonal antibody (mAb; h2G7) and identified its mechanism of action in preclinical APAP-ALI. The mouse anti-HMGB1 mAb (m2G7) was partly humanized (h2G7) by merging variable domains of m2G7 with human antibody-Fc backbones. Effector function-deficient variants of h2G7 were assessed in comparison with h2G7 in vitro and in preclinical APAP-ALI. h2G7 retained identical antigen specificity and comparable affinity as m2G7. 2G7 treatments significantly attenuated APAP-induced serum elevations of alanine aminotransferase and microRNA-122 and completely abrogated markers of APAP-induced inflammation (tumor necrosis factor, monocyte chemoattractant protein 1, and chemokine [C-X-C motif] ligand 1) with prolonged therapeutic efficacy as compared to NAC. Removal of complement and/or Fc receptor binding did not affect h2G7 efficacy. CONCLUSION: This is the first report describing the generation of a partly humanized HMGB1-neutralizing antibody with validated therapeutic efficacy and with a prolonged therapeutic window, as compared to NAC, in APAP-ALI. The therapeutic effect was mediated by HMGB1 neutralization and attenuation of postinjury inflammation. These results represent important progress toward clinical implementation of HMGB1-specific therapy as a means to treat APAP-ALI and other inflammatory conditions. (Hepatology 2016;64:1699-1710).


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Proteína HMGB1/uso terapéutico , Inflamación/tratamiento farmacológico , Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Animales , Antipiréticos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Expert Opin Drug Saf ; 15(5): 625-34, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26923482

RESUMEN

INTRODUCTION: Drug-induced liver injury (DILI) represents a serious medical challenge and a potentially fatal adverse event. Currently, DILI is a diagnosis of exclusion, and whilst the electronic evaluation of serious drug-induced hepatotoxicity (eDISH) have revolutionised the early assessment of DILI, this model is dependent upon clinical chemistry parameters that lack sensitivity and specificity. DILI management usually consists of initial withdrawal of the suspected drug and, in the case of acetaminophen, administration of specific therapy. AREAS COVERED: We summarise recent advances and knowledge gaps in the development and qualification of novel DILI biomarkers and therapeutic interventions. EXPERT OPINION: Promising biomarkers have been identified that provide increased hepatic specificity (miR-122), mechanistic insight (Keratin-18), and prognostic information (HMGB1, KIM-1, CSF-1). Pharmacogenomics holds potential to preselect susceptible populations and tailor drug therapy. Biomarkers can uncover new mechanisms of drug-induced pathophysiology which, for HMGB1 and CSF-1, have led to promising mechanism-based therapeutic interventions. However, these biomarkers have not been formally qualified and are not in routine clinical use. With the development of inventive clinical trials and by maximising DILI data registries, these novel biomarkers could add substantial value to the current armoury, change the management of DILI in the near future and improve patient safety.


Asunto(s)
Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/fisiopatología , Humanos , Pronóstico , Sensibilidad y Especificidad
7.
Antioxid Redox Signal ; 24(12): 652-65, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26481429

RESUMEN

SIGNIFICANCE: High-mobility group box 1 (HMGB1) is a critical protein in the coordination of the inflammatory response in drug-induced liver injury (DILI). HMGB1 is released from necrotic hepatocytes and activated immune cells. The extracellular function of HMGB1 is dependent upon redox modification of cysteine residues that control chemoattractant and cytokine-inducing properties. Existing biomarkers of DILI such as alanine aminotransferase (ALT) have limitations such as lack of sensitivity and tissue specificity that can adversely affect clinical intervention. RECENT ADVANCES: HMGB1 isoforms have been shown to be more sensitive biomarkers than ALT for predicting DILI development and the requirement for liver transplant following acetaminophen (APAP) overdose. Hepatocyte-specific conditional knockout of HMGB1 has demonstrated the pivotal role of HMGB1 in DILI and liver disease. Tandem mass spectrometry (MS/MS) enables the characterization and quantification of different mechanism-dependent post-translationally modified isoforms of HMGB1. CRITICAL ISSUES: HMGB1 shows great promise as a biomarker of DILI. However, current diagnostic assays are either too time-consuming to be clinically applicable (MS/MS) or are unable to distinguish between different redox and acetyl isoforms of HMGB1 (ELISA). Additionally, HMGB1 is not liver specific, so while it outperforms ALT (also not liver specific) as a biomarker for the prediction of DILI development, it should be used in a biomarker panel along with liver-specific markers such as miR-122. FUTURE DIRECTIONS: A point-of-care test for HMGB1 and the development of redox and acetyl isoform-targeting antibodies will advance clinical utility. Work is ongoing to validate baseline levels of circulating HMGB1 in healthy volunteers.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Proteína HMGB1/análisis , Humanos , MicroARNs/análisis , MicroARNs/metabolismo , Oxidación-Reducción , Pruebas en el Punto de Atención , Isoformas de Proteínas/metabolismo
8.
Toxicol Appl Pharmacol ; 283(3): 168-77, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25636263

RESUMEN

Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models.


Asunto(s)
Ácidos y Sales Biliares/toxicidad , Colestasis Extrahepática/patología , Ácido Glicoquenodesoxicólico/toxicidad , Hepatocitos/efectos de los fármacos , Ictericia Obstructiva/patología , Acetilación , Animales , Ácidos y Sales Biliares/sangre , Biomarcadores/sangre , Células Cultivadas , Colestasis Extrahepática/sangre , Relación Dosis-Respuesta a Droga , Proteína HMGB1/sangre , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Ictericia Obstructiva/sangre , Queratina-18/sangre , Ratones Endogámicos C57BL , Necrosis , Cultivo Primario de Células , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...