Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Sci Adv ; 8(45): eabm3548, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36351009

RESUMEN

Metastasis is responsible for most breast cancer-related deaths; however, identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we demonstrated that Lmo2 lineage-traced cells integrate into the vasculature and have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by tumor necrosis factor-α and interleukin-6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/patología , Neoplasias Pulmonares/metabolismo , Transducción de Señal , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo
2.
Mol Oncol ; 16(17): 3128-3145, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35398967

RESUMEN

As precision medicine increases the response rate of treatment, tumors frequently bypass inhibition, and reoccur. In order for treatment to be effective long term, the mechanisms enabling treatment adaptation need to be understood. Here, we report a mouse model that, in the absence of p53 and the presence of oncogenic KrasG12D , develops breast tumors. Upon inactivation of KrasG12D , tumors initially regress and enter remission. Subsequently, the majority of tumors adapt to the withdrawal of KrasG12D expression and return. KrasG12D -independent tumor cells show a strong mesenchymal profile with active RAS-RAF-MEK-ERK (MAPK/ERK) signaling. Both KrasG12D -dependent and KrasG12D -independent tumors display a high level of genomic instability, and KrasG12D -independent tumors harbor numerous amplified genes that can activate the MAPK/ERK signaling pathway. Our study identifies both epithelial-mesenchymal transition (EMT) and active MAPK/ERK signaling in tumors that adapt to oncogenic KrasG12D withdrawal in a novel Trp53-/- breast cancer mouse model. To achieve long-lasting responses in the clinic to RAS-fueled cancer, treatment will need to focus in parallel on obstructing tumors from adapting to oncogene inhibition.


Asunto(s)
Transición Epitelial-Mesenquimal , Genes ras , Animales , Carcinogénesis/genética , Transición Epitelial-Mesenquimal/genética , Sistema de Señalización de MAP Quinasas , Ratones , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
3.
Elife ; 112022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35311644

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the Bone Morphogenetic Signaling (BMP) pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Transgénicos , Placa Amiloide , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
4.
Biol Rev Camb Philos Soc ; 96(3): 976-998, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561321

RESUMEN

Biodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation. Fire and fragmentation interact in three main ways: (i) fire influences fragmentation (59% of 274 cases), where fire either destroys and fragments habitat or creates and connects habitat; (ii) fragmentation influences fire (25% of cases) where, after habitat is reduced in area and fragmented, fire in the landscape is subsequently altered because people suppress or ignite fires, or there is increased edge flammability or increased obstruction to fire spread; and (iii) where the two do not influence each other, but fire interacts with fragmentation to affect responses like species richness, abundance and extinction risk (16% of cases). Where fire and fragmentation do influence each other, feedback loops are possible that can lead to ecosystem conversion (e.g. forest to grassland). This is a well-documented threat in the tropics but with potential also to be important elsewhere. Fire interacts with fragmentation through scale-specific mechanisms: fire creates edges and drives edge effects; fire alters patch quality; and fire alters landscape-scale connectivity. We found only 12 cases in which studies reported the four essential strata for testing a full interaction, which were fragmented and unfragmented landscapes that both span contrasting fire histories, such as recently burnt and long unburnt vegetation. Simulation and empirical studies show that fire and fragmentation can interact synergistically, multiplicatively, antagonistically or additively. These cases highlight a key reason why understanding interactions is so important: when fire and fragmentation act together they can cause local extinctions, even when their separate effects are neutral. Whether fire-fragmentation interactions benefit or disadvantage species is often determined by the species' preferred successional stage. Adding fire to landscapes generally benefits early-successional plant and animal species, whereas it is detrimental to late-successional species. However, when fire interacts with fragmentation, the direction of effect of fire on a species could be reversed from the effect expected by successional preferences. Adding fire to fragmented landscapes can be detrimental for species that would normally co-exist with fire, because species may no longer be able to disperse to their preferred successional stage. Further, animals may be attracted to particular successional stages leading to unexpected responses to fragmentation, such as higher abundance in more isolated unburnt patches. Growing human populations and increasing resource consumption suggest that fragmentation trends will worsen over coming years. Combined with increasing alteration of fire regimes due to climate change and human-caused ignitions, interactions of fire with fragmentation are likely to become more common. Our new framework paves the way for developing a better understanding of how fire interacts with fragmentation, and for conserving biodiversity in the face of these emerging challenges.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Bosques , Humanos , Plantas
5.
Stem Cell Reports ; 16(2): 228-236, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33482103

RESUMEN

The mammary epithelium undergoes several rounds of extensive proliferation during the female reproductive cycle. Its expansion is a tightly regulated process, fueled by the mammary stem cells and these cells' unique property of self-renewal. Sufficient new cells have to be produced to maintain the integrity of a tissue, but excessive proliferation resulting in tumorigenesis needs to be prevented. Three well-known tumor suppressors, p53, p16INK4a, and p19ARF, have been connected to the limiting of stem cell self-renewal and proliferation. Here we investigate the roles of these three proteins in the regulation of self-renewal and proliferation of mammary epithelial cells. Using mammary epithelial-specific mouse models targeting Trp53 and Cdkn2a, the gene coding for p16INK4a and p19ARF, we demonstrate that p53, p16INK4a, and p19ARF do not play a significant role in the limitation of normal mammary epithelium self-renewal and proliferation, whereas in the presence of the inflammatory cytokine TNF-α, Trp53-/-Cdkn2a-/- mammary basal cells exhibit amplified proliferation.


Asunto(s)
Proliferación Celular , Autorrenovación de las Células , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Epiteliales/metabolismo , Glándulas Mamarias Animales , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinogénesis/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Organoides/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Science ; 370(6519)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33214246

RESUMEN

Fire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening species with extinction and transforming terrestrial ecosystems. Conservation of Earth's biological diversity will be achieved only by recognizing and responding to the critical role of fire. In the Anthropocene, this requires that conservation planning explicitly includes the combined effects of human activities and fire regimes. Improved forecasts for biodiversity must also integrate the connections among people, fire, and ecosystems. Such integration provides an opportunity for new actions that could revolutionize how society sustains biodiversity in a time of changing fire activity.


Asunto(s)
Biodiversidad , Cambio Climático , Extinción Biológica , Incendios Forestales , Animales , Especies en Peligro de Extinción , Predicción , Actividades Humanas , Humanos
7.
Sci Rep ; 10(1): 15251, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943655

RESUMEN

Single cell transcriptomics is revolutionising our understanding of tissue and disease heterogeneity, yet cell type identification remains a partially manual task. Published algorithms for automatic cell annotation are limited to known cell types and fail to capture novel populations, especially cancer cells. We developed northstar, a computational approach to classify thousands of cells based on published data within seconds while simultaneously identifying and highlighting new cell states such as malignancies. We tested northstar on data from glioblastoma, melanoma, and seven different healthy tissues and obtained high accuracy and robustness. We collected eleven pancreatic tumors and identified three shared and five private neoplastic cell populations, offering insight into the origins of neuroendocrine and exocrine tumors. Northstar is a useful tool to assign known and novel cell type and states in the age of cell atlases.


Asunto(s)
Algoritmos , Glioblastoma/clasificación , Glioblastoma/patología , Melanoma/clasificación , Melanoma/patología , Encéfalo/citología , Análisis por Conglomerados , Bases de Datos Factuales , Perfilación de la Expresión Génica , Humanos , Tumores Neuroendocrinos/clasificación , Tumores Neuroendocrinos/patología , Páncreas Exocrino/patología , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/patología , Análisis de la Célula Individual
8.
Cell Stem Cell ; 27(2): 284-299.e8, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32693087

RESUMEN

SMAD pathways govern epithelial proliferation, and transforming growth factor ß (TGF-ß and BMP signaling through SMAD members has distinct effects on mammary development and homeostasis. Here, we show that LEFTY1, a secreted inhibitor of NODAL/SMAD2 signaling, is produced by mammary progenitor cells and, concomitantly, suppresses SMAD2 and SMAD5 signaling to promote long-term proliferation of normal and malignant mammary epithelial cells. In contrast, BMP7, a NODAL antagonist with context-dependent functions, is produced by basal cells and restrains progenitor cell proliferation. In normal mouse epithelium, LEFTY1 expression in a subset of luminal cells and rare basal cells opposes BMP7 to promote ductal branching. LEFTY1 binds BMPR2 to suppress BMP7-induced activation of SMAD5, and this LEFTY1-BMPR2 interaction is specific to tumor-initiating cells in triple-negative breast cancer xenografts that rely on LEFTY1 for growth. These results suggest that LEFTY1 is an endogenous dual-SMAD inhibitor and that suppressing its function may represent a therapeutic vulnerability in breast cancer.


Asunto(s)
Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Carcinogénesis , Transformación Celular Neoplásica , Ratones
9.
Science ; 367(6476): 405-411, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31974247

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation is challenging. Here, we demonstrate a simple, yet robust, determinant of developmental potential-the number of expressed genes per cell-and leverage this measure of transcriptional diversity to develop a computational framework (CytoTRACE) for predicting differentiation states from scRNA-seq data. When applied to diverse tissue types and organisms, CytoTRACE outperformed previous methods and nearly 19,000 annotated gene sets for resolving 52 experimentally determined developmental trajectories. Additionally, it facilitated the identification of quiescent stem cells and revealed genes that contribute to breast tumorigenesis. This study thus establishes a key RNA-based feature of developmental potential and a platform for delineation of cellular hierarchies.


Asunto(s)
Diferenciación Celular/genética , Neoplasias/genética , ARN Citoplasmático Pequeño/genética , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Transcripción Genética , Animales , Secuencia de Bases , Variación Genética , Humanos , Ratones
11.
Ecol Appl ; 29(8): e01980, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31330069

RESUMEN

Conservation managers regularly burn vegetation to regenerate habitat for fire-dependent species. When determining the time since fire at which to burn, managers model change in a species' occurrence over time, post-fire (fire-response curve) and identify the time since fire associated with decline in occurrence. However, where species exhibit variability in their fire response across space, using a single fire-response curve to determine the timing of burns may lead to burning habitat at an inappropriate time since fire. We tested if elevation, local topography, soil properties, vegetation type or evapotranspiration affect the fire response of the endangered Mallee Emu-wren Stipiturus mallee and its hummock-grass habitat Triodia scariosa in southeastern Australia (n = 217). Previous work on the Mallee Emu-wren found a unimodal fire response with decline in occurrence at ~30-50 yr since fire and a time window of occurrence of ~30 yr. We found that time since fire and elevation interact to affect the Mallee Emu-wren fire response. At high elevations (55-98 m), Mallee Emu-wrens declined in occurrence at ~50 yr since fire, with a time window of occurrence of 20-40 yr. However, at low elevations (28-55 m), Mallee Emu-wrens showed no decline in occurrence with increasing time since fire with a time window of occurrence of up to 107 yr. Extent cover of Tall T. scariosa showed similar patterns to the Mallee Emu-wren, indicating that vegetation structure is a likely driver of variability in the Mallee Emu-wren fire response. We speculate that the effect of low elevation is mediated by increased soil nutrient and water availability for key plants. We used our findings to map the appropriate time since fire at which to burn to regenerate habitat for the Mallee Emu-wren across the study region. We recommend no burning for regeneration across one-third of potential habitat, because the Mallee Emu-wren showed no decline in occurrence in these areas. We recommend managers model variability in species' fire responses across space to improve the timing of burns for regeneration.


Asunto(s)
Incendios , Animales , Australia , Aves , Ecosistema , Suelo
14.
Biol Rev Camb Philos Soc ; 94(3): 981-998, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30565370

RESUMEN

Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.


Asunto(s)
Ecosistema , Incendios , Actividad Motora , Animales , Conservación de los Recursos Naturales , Dinámica Poblacional
15.
Sci Rep ; 8(1): 17506, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504774

RESUMEN

Regulation of the Wnt pathway in stem cells and primary tissues is still poorly understood. Here we report that Usp16, a negative regulator of Bmi1/PRC1 function, modulates the Wnt pathway in mammary epithelia, primary human fibroblasts and MEFs, affecting their expansion and self-renewal potential. In mammary glands, reduced levels of Usp16 increase tissue responsiveness to Wnt, resulting in upregulation of the downstream Wnt target Axin2, expansion of the basal compartment and increased in vitro and in vivo epithelial regeneration. Usp16 regulation of the Wnt pathway in mouse and human tissues is at least in part mediated by activation of Cdkn2a, a regulator of senescence. At the molecular level, Usp16 affects Rspo-mediated phosphorylation of LRP6. In Down's Syndrome (DS), triplication of Usp16 dampens the activation of the Wnt pathway. Usp16 copy number normalization restores normal Wnt activation in Ts65Dn mice models. Genetic upregulation of the Wnt pathway in Ts65Dn mice rescues the proliferation defect observed in mammary epithelial cells. All together, these findings link important stem cell regulators like Bmi1/Usp16 and Cdkn2a to Wnt signaling, and have implications for designing therapies for conditions, like DS, aging or degenerative diseases, where the Wnt pathway is hampered.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Regulación de la Expresión Génica , Ubiquitina Tiolesterasa/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Ubiquitina Tiolesterasa/genética , Proteína Wnt3A/metabolismo
16.
Breast Cancer Res ; 20(1): 121, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305179

RESUMEN

BACKGROUND: Recent studies in murine mammary tissue have identified functionally distinct cell populations that may be isolated by surface phenotype or lineage tracing. Previous groups have shown that CD24medCD49fhigh cells enriched for long-lived mammary epithelial cells can be serially transplanted. METHODS: Flow cytometry-based enrichment of distinct phenotypic populations was assessed for their gene expression profiles and functional proliferative attributes in vitro and in vivo. RESULTS: Here, we show Thy-1 is differentially expressed in the CD24medCD49fhigh population, which allowed us to discern two functionally different populations. The Thy-1+CD24medCD49fhigh phenotype contained the majority of the serially transplantable epithelial cells. The Thy-1-CD24medCD49fhigh phenotype contains a rare progenitor population that is able to form primary mammary outgrowths with significantly decreased serial in vivo transplantation potential. CONCLUSIONS: Therefore, Thy-1 expression in the immature cell compartment is a useful tool to study the functional heterogeneity that drives mammary gland development and has implications for disease etiology.


Asunto(s)
Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Glándulas Mamarias Animales/citología , Antígenos Thy-1/genética , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Células Epiteliales/trasplante , Femenino , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Antígenos Thy-1/metabolismo
17.
Nat Commun ; 8(1): 1669, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162812

RESUMEN

Previous studies have proposed that epithelial to mesenchymal transition (EMT) in breast cancer cells regulates metastasis, stem cell properties and chemo-resistance; most studies were based on in vitro culture of cell lines and mouse transgenic cancer models. However, the identity and function of cells expressing EMT-associated genes in normal murine mammary gland homeostasis and human breast cancer still remains under debate. Using in vivo lineage tracing and triple negative breast cancer (TNBC) patient derived xenografts we demonstrate that the repopulating capacity in normal mammary epithelial cells and tumorigenic capacity in TNBC is independent of expression of EMT-associated genes. In breast cancer, while a subset of cells with epithelial and mesenchymal phenotypes have stem cell activity, in many cells that have lost epithelial characteristics with increased expression of mesenchymal genes, have decreased tumor-initiating capacity and plasticity. These findings have implications for the development of effective therapeutic agents targeting tumor-initiating cells.


Asunto(s)
Mama/metabolismo , Transformación Celular Neoplásica/genética , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Neoplasias de la Mama Triple Negativas/genética , Animales , Mama/citología , Mama/fisiología , Células Epiteliales/metabolismo , Femenino , Humanos , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Regeneración/genética , Trasplante Heterólogo , Neoplasias de la Mama Triple Negativas/patología
18.
Nucleic Acids Res ; 45(17): e153, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973448

RESUMEN

The complexity and inefficiency of chromatin immunoprecipitation strategies restrict their sensitivity and application when examining rare cell populations. We developed a new technique that replaces immunoprecipitation with a simplified chromatin fragmentation and proximity ligation step that eliminates bead purification and washing steps. We present a simple single tube proximity ligation technique, targeted chromatin ligation, that captures histone modification patterns with only 200 cells. Our technique eliminates loss of material and sensitivity due to multiple inefficient steps, while simplifying the workflow to enhance sensitivity and create the potential for novel applications.


Asunto(s)
Técnicas de Química Analítica , Cromatina/metabolismo , Epigénesis Genética , Histonas/genética , Neuronas/metabolismo , Animales , Recuento de Células , Cromatina/química , Inmunoprecipitación de Cromatina , División del ADN , Histonas/metabolismo , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Cultivo Primario de Células , Proteolisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Nat Commun ; 8: 14802, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28378740

RESUMEN

CD47 is a cell surface molecule that inhibits phagocytosis of cells that express it by binding to its receptor, SIRPα, on macrophages and other immune cells. CD47 is expressed at different levels by neoplastic and normal cells. Here, to reveal mechanisms by which different neoplastic cells generate this dominant 'don't eat me' signal, we analyse the CD47 regulatory genomic landscape. We identify two distinct super-enhancers (SEs) associated with CD47 in certain cancer cell types. We show that a set of active constituent enhancers, located within the two CD47 SEs, regulate CD47 expression in different cancer cell types and that disruption of CD47 SEs reduces CD47 gene expression. Finally we report that the TNF-NFKB1 signalling pathway directly regulates CD47 by interacting with a constituent enhancer located within a CD47-associated SE specific to breast cancer. These results suggest that cancers can evolve SE to drive CD47 overexpression to escape immune surveillance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Antígeno CD47/fisiología , Elementos de Facilitación Genéticos , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Transducción de Señal , Regulación hacia Arriba , Animales , Neoplasias de la Mama/patología , Antígeno CD47/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Subunidad p50 de NF-kappa B/metabolismo , Fagocitosis , Unión Proteica , Factor de Necrosis Tumoral alfa/metabolismo
20.
Science ; 356(6335)2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28280246

RESUMEN

The stem cell niche is a complex local signaling microenvironment that sustains stem cell activity during organ maintenance and regeneration. The mammary gland niche must support its associated stem cells while also responding to systemic hormonal regulation that triggers pubertal changes. We find that Gli2, the major Hedgehog pathway transcriptional effector, acts within mouse mammary stromal cells to direct a hormone-responsive niche signaling program by activating expression of factors that regulate epithelial stem cells as well as receptors for the mammatrophic hormones estrogen and growth hormone. Whereas prior studies implicate stem cell defects in human disease, this work shows that niche dysfunction may also cause disease, with possible relevance for human disorders and in particular the breast growth pathogenesis associated with combined pituitary hormone deficiency.


Asunto(s)
Hormona del Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Nicho de Células Madre/genética , Proteína Gli2 con Dedos de Zinc/fisiología , Animales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Estrógenos/metabolismo , Femenino , Expresión Génica , Hormona del Crecimiento/sangre , Hormona del Crecimiento/deficiencia , Proteínas Hedgehog/genética , Factor II del Crecimiento Similar a la Insulina/genética , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Prolactina/metabolismo , Maduración Sexual/genética , Transducción de Señal/genética , Células del Estroma/metabolismo , Proteínas Wnt/genética , Proteína Gli2 con Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...