Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771529

RESUMEN

Legumes are generally considered to be more responsive to elevated CO2 (eCO2) conditions due to the benefits provided by symbiotic nitrogen fixation. In response to high carbohydrate demand from nodules, legumes display autoregulation of nodulation (AON) to restrict nodules to the minimum number necessary to sustain nitrogen supply under current photosynthetic levels. AON mutants super-nodulate and typically grow smaller than wild-type plants under ambient CO2. Here, we show that AON super-nodulating mutants have substantially higher biomass under eCO2 conditions, which is sustained through increased photosynthetic investment. We examined photosynthetic and physiological traits across super-nodulating rdn1-1 (Root Determined Nodulation) and sunn4 (Super Numeric Nodules) and non-nodulating nfp1 (Nod Factor Perception) Medicago truncatula mutants. Under eCO2 conditions, super-nodulating plants exhibited increased rates of carboxylation (Vcmax) and electron transport (J) relative to wild-type and non-nodulating counterparts. The substantially higher rate of CO2 assimilation in eCO2-grown sunn4 super-nodulating plants was sustained through increased production of key photosynthetic enzymes, including Rieske FeS. We hypothesize that AON mutants are carbon-limited and can perform better at eCO2 through improved photosynthesis. Nodulating legumes, especially those with higher nitrogen fixation capability, are likely to out-perform non-nodulating plants under future CO2 conditions and will be important tools for understanding carbon and nitrogen partitioning under eCO2 conditions and future crop improvements.

2.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200623

RESUMEN

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Asunto(s)
Nitrógeno , Agua , Australia
3.
J Exp Bot ; 73(11): 3625-3636, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35184158

RESUMEN

In plants with C3 photosynthesis, increasing the diffusion conductance for CO2 from the substomatal cavity to chloroplast stroma (mesophyll conductance) can improve the efficiencies of both CO2 assimilation and photosynthetic water use. In the diffusion pathway from substomatal cavity to chloroplast stroma, the plasmalemma and chloroplast envelope membranes impose a considerable barrier to CO2 diffusion, limiting photosynthetic efficiency. In an attempt to improve membrane permeability to CO2, and increase photosynthesis in tobacco, we generated transgenic lines in Nicotiana tabacum L. cv Petite Havana carrying either the Arabidopsis PIP1;2 (AtPIP1;2) or PIP1;4 (AtPIP1;4) gene driven by the constitutive dual 2x35S CMV promoter. From a collection of independent T0 transgenics, two T2 lines from each gene were characterized, with western blots confirming increased total aquaporin protein abundance in the AtPIP1;2 tobacco lines. Transient expression of AtPIP1;2-mGFP6 and AtPIP1;4-mGFP6 fusions in Nicotiana benthamiana identified that both AtPIP1;2 and AtPIP1;4 localize to the plasmalemma. Despite achieving ectopic production and correct localization, gas exchange measurements combined with carbon isotope discrimination measurements detected no increase in mesophyll conductance or CO2 assimilation rate in the tobacco lines expressing AtPIP. We discuss the complexities associated with trying to enhance gm through modified aquaporin activity.


Asunto(s)
Acuaporinas , Arabidopsis , Acuaporinas/genética , Acuaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
4.
Interface Focus ; 11(2): 20200040, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33628426

RESUMEN

The partial pressure of CO2 at the sites of carboxylation within chloroplasts depends on the conductance to CO2 diffusion from intercellular airspace to the sites of carboxylation, termed mesophyll conductance (g m). We investigated how g m varies with leaf age and through a tobacco (Nicotiana tabacum) canopy by combining gas exchange and carbon isotope measurements using tunable diode laser spectroscopy. We combined these measurements with the anatomical characterization of leaves. CO2 assimilation rate, A, and g m decreased as leaves aged and moved lower in the canopy and were linearly correlated. This was accompanied by large anatomical changes including an increase in leaf thickness. Chloroplast surface area exposed to the intercellular airspace per unit leaf area (S c) also decreased lower in the canopy. Older leaves had thicker mesophyll cell walls and g m was inversely proportional to cell wall thickness. We conclude that reduced g m of older leaves lower in the canopy was associated with a reduction in S c and a thickening of mesophyll cell walls.

5.
Insects ; 12(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374543

RESUMEN

The Colorado potato beetle (CPB) is one of the most adaptable insect pests to both plant toxins and synthetic insecticides. Resistance in CPB is reported for over 50 classes of insecticides, and mechanisms of insecticide-resistance include enhanced detoxification enzymes, ABC transporters and target site mutations. Adaptation to insecticides is also associated with changes in behaviour, energy metabolism and other physiological processes seemingly unrelated to resistance but partially explained through genomic analyses. In the present study, in place of genomics, we applied 2-dimensional (2-D) gel and mass spectrometry to investigate protein differences in abdominal and midgut tissue of insecticide-susceptible (S) and -resistant (R) CPB. The proteomic analyses measured constitutive differences in several proteins, but the highest match was identified as a C-type lectin (CTL), a component of innate immunity in insects. The constitutive expression of the CTL was greater in the multi-resistant (LI) strain, and the same spot was measured in both midgut and abdominal tissue. Exposure to the neonicotinoid insecticide, imidacloprid, increased the CTL spot found in the midgut but not in the abdominal tissue of the laboratory (Lab) strain. No increase in protein levels in the midgut tissue was observed in the LI or a field strain (NB) tolerant to neonicotinoids. With the exception of biopesticides, such as Bacillus thuringiensis (Bt), no previous studies have documented differences in the immune response by CTLs in insects exposed to synthetic insecticides or the fitness costs associated with expression levels of immune-related genes in insecticide-resistant strains. This study demonstrates again how CPB has been successful at adapting to insecticides, plant defenses as well as pathogens.

6.
J Exp Bot ; 70(1): 7-15, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30357381

RESUMEN

Global food security depends on three main cereal crops (wheat, rice and maize) achieving and maintaining high yields, as well as increasing their future yields. Fundamental to the production of this biomass is photosynthesis. The process of photosynthesis involves a large number of proteins that together account for the majority of the nitrogen in leaves. As large amounts of nitrogen are removed in the harvested grain, this needs to be replaced either from synthetic fertilizer or biological nitrogen fixation. Knowledge about photosynthetic properties of leaves in natural ecosystems is also important, particularly when we consider the potential impacts of climate change. While the relationship between nitrogen and photosynthetic capacity of a leaf differs between species, leaf nitrogen content provides a useful way to incorporate photosynthesis into models of ecosystems and the terrestrial biosphere. This review provides a generalized nitrogen budget for a C3 leaf cell and discusses the potential for improving photosynthesis from a nitrogen perspective.


Asunto(s)
Nitrógeno/metabolismo , Oryza/fisiología , Fotosíntesis/fisiología , Triticum/fisiología , Zea mays/fisiología , Hojas de la Planta/metabolismo
7.
Food Chem ; 244: 60-70, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29120805

RESUMEN

ß-conglutin has been identified as a major allergen for Lupinus angustifolius seeds. The aim of this study was to evaluate the binding of IgE to five recombinant ß-conglutin isoforms (rß) that we overexpressed and purified and to their natural counterparts in different lupin species and cultivars. Western blotting suggested ß-conglutins were the main proteins responsible for the IgE reactivity of the lupin species and cultivars. Newly identified polypeptides from "sweet lupin" may constitute a potential new source of primary or cross-reactive sensitization to lupin, particularly to L. albus and L. angustifolius seed proteins. Several of them exhibited qualitative and quantitative differences in IgE-binding among these species and cultivars, mainly in sera from atopic patients that react to lupin rather than peanut. IgE-binding was more consistent to recombinant ß2 than to any of the other isoforms, making this protein a potential candidate for diagnosis and immunotherapy.


Asunto(s)
Inmunoglobulina E/metabolismo , Lupinus/inmunología , Proteínas de Almacenamiento de Semillas/inmunología , Alérgenos/inmunología , Arachis/inmunología , Western Blotting , Reacciones Cruzadas , Hipersensibilidad a los Alimentos/inmunología , Humanos , Lupinus/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/química , Semillas/inmunología
8.
Mol Cell Proteomics ; 14(5): 1301-22, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25724908

RESUMEN

Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis.


Asunto(s)
Glycine max/química , Proteoma/análisis , Rhizobium/química , Nódulos de las Raíces de las Plantas/química , Secuencia de Aminoácidos , Transporte Biológico , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Extracción Líquido-Líquido , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Células Vegetales/química , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Rhizobium/genética , Rhizobium/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Simbiosis/fisiología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/aislamiento & purificación , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
9.
Front Plant Sci ; 5: 699, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566274

RESUMEN

The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

10.
Planta ; 232(5): 1141-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20706734

RESUMEN

The synthesis and deactivation of bioactive gibberellins (GA) are regulated by auxin and by GA signalling. The effect of GA on its own pathway is mediated by DELLA proteins. Like auxin, the DELLAs promote GA synthesis and inhibit its deactivation. Here, we investigate the relationships between auxin and DELLA regulation of the GA pathway in stems, using a pea double mutant that is deficient in DELLA proteins. In general terms our results demonstrate that auxin and DELLAs independently regulate the GA pathway, contrary to some previous suggestions. The extent to which DELLA regulation was able to counteract the effects of auxin regulation varied from gene to gene. For Mendel's LE gene (PsGA3ox1) no counteraction was observed. However, for another synthesis gene, a GA 20-oxidase, the effect of auxin was weak and in WT plants appeared to be completely over-ridden by DELLA regulation. For a key GA deactivation (2-oxidase) gene, PsGA2ox1, the up-regulation induced by auxin deficiency was reduced to some extent by DELLA regulation. A second pea 2-oxidase gene, PsGA2ox2, was up-regulated by auxin, in a DELLA-independent manner. In Arabidopsis also, one 2-oxidase gene was down-regulated by auxin while another was up-regulated. Monitoring the metabolism pattern of GA(20) showed that in Arabidopsis, as in pea, auxin can promote the accumulation of bioactive GA.


Asunto(s)
Giberelinas/metabolismo , Ácidos Indolacéticos/farmacología , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/genética , Pisum sativum/efectos de los fármacos , Pisum sativum/genética , Proteínas de Plantas/genética , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...