Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
GMS J Med Educ ; 40(4): Doc50, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560040

RESUMEN

Objectives: In the early phase of their studies, students are confronted with a number of teaching and learning methods they are usually not familiar with. Beyond, learning in a university environment requires a high degree of self-organization. Thus, the transition from learning in a school environment to university can be challenging for students and associated with adjustment difficulties. We hypothesized that synchronous online lecturing might be able to serve as a thematic superstructure and a curricular guide that can positively influence course perception, motivation and exam outcome. Methods: We investigated this hypothesis in a retrospective approach by comparing results from histology exams (2020 n=411, 2021 n= 423) and questionnaires for course evaluation received from medical and dentistry second semester students of the RWTH Aachen University, Germany, in 2020 (n=113 questionnaire participants) and 2021 (n=106 questionnaire participants). While in 2020, due to the Corona Pandemic, no synchronous online lectures were held, these were reintroduced in 2021. Results: Our results show several differences in between the two study cohorts. Most important findings include a significantly (p<0.001) lower number of students that failed to pass or withdrew from the exam in 2021, an increased motivation to deal with the learning content (p<0.001) and a higher perceived quality of the study materials (p<0.001) in 2021. Conclusion: Our study indicates that synchronous online lectures can be an important tool to help students to accustom to new learning environments and to structure private study. Further studies will now have to show whether live (online) lectures can have the same significance during clinical training.


Asunto(s)
Aprendizaje , Estudiantes , Humanos , Estudios Retrospectivos , Encuestas y Cuestionarios , Percepción
2.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240031

RESUMEN

Spinal cord injury (SCI) results in the production of proinflammatory cytokines due to inflammasome activation. Lipocalin 2 (LCN2) is a small secretory glycoprotein upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 secretion is induced by infection, injury, and metabolic disorders. In contrast, LCN2 has been implicated as an anti-inflammatory regulator. However, the role of LCN2 in inflammasome activation during SCI remains unknown. This study examined the role of Lcn2 deficiency in the NLRP3 inflammasome-dependent neuroinflammation in SCI. Lcn2-/- and wild-type (WT) mice were subjected to SCI, and locomotor function, formation of the inflammasome complex, and neuroinflammation were assessed. Our findings demonstrated that significant activation of the HMGB1/PYCARD/caspase-1 inflammatory axis was accompanied by the overexpression of LCN2 7 days after SCI in WT mice. This signal transduction results in the cleaving of the pyroptosis-inducing protein gasdermin D (GSDMD) and the maturation of the proinflammatory cytokine IL-1ß. Furthermore, Lcn2-/- mice showed considerable downregulation in the HMGB1/NLRP3/PYCARD/caspase-1 axis, IL-1ß production, pore formation, and improved locomotor function compared with WT. Our data suggest that LCN2 may play a role as a putative molecule for the induction of inflammasome-related neuroinflammation in SCI.


Asunto(s)
Proteína HMGB1 , Traumatismos de la Médula Espinal , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipocalina 2/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal/metabolismo , Citocinas/metabolismo , Caspasas/metabolismo , Piroptosis/fisiología
3.
Proc Natl Acad Sci U S A ; 119(40): e2204509119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161894

RESUMEN

Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.


Asunto(s)
Azetidinas , Compuestos de Bencilo , Esclerosis Múltiple Crónica Progresiva , Oligodendroglía , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animales , Azetidinas/farmacología , Compuestos de Bencilo/farmacología , Cuprizona , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Esfingosina/farmacología , Esfingosina/uso terapéutico , Receptores de Esfingosina-1-Fosfato/metabolismo
4.
Glia ; 70(11): 2188-2206, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35856297

RESUMEN

Multiple sclerosis (MS) is a central nervous system disease characterized by both degenerative and inflammatory processes. Various mediators are involved in the interplay of degeneration and innate immunity on one hand and peripheral adaptive immunity on the other hand. The secreted protein lipocalin 2 (LCN2) is an inflammatory modulator in a variety of pathologies. Although elevated intrathecal levels of LCN2 have been reported in MS patients, it's functional role is widely unknown. Here, we identified a subpopulation of astrocytes as a source of LCN2 in MS lesions and respective animal models. We investigated the functional role of LCN2 for both autoimmune and degenerative aspects in three MS mouse models including both wild type (WT) and Lcn2-/- mouse strains. While the experimental autoimmune encephalomyelitis (EAE) model reflects primary autoimmunity, the cuprizone model reflects selective oligodendrocyte loss and demyelination. In addition, we included a combinatory Cup/EAE model in which primary cytodegeneration is followed by inflammatory lesions within the forebrain. While in the EAE model, the disease outcome was comparable in between the two mouse strains, cuprizone intoxicated Lcn2-/- animals showed an increased loss of oligodendrocytes. In the Cup/EAE model, Lcn2-/- animals showed increased inflammation when compared to WT mice. Together, our results highlight LCN2 as a potentially protective molecule in MS lesion formation, which might be able to limit loss of oligodendrocytes immune-cell invasion. Despite these findings, it is not yet clear which glial cell phenotype (and to which extent) contributes to the observed neuroprotective effects, that is, microglia and/or astroglia or even endothelial cells in the brain.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Lipocalina 2/metabolismo , Esclerosis Múltiple , Animales , Cuprizona , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Células Endoteliales/metabolismo , Lipocalina 2/genética , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Prosencéfalo/patología
5.
J Neuroinflammation ; 19(1): 134, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668451

RESUMEN

BACKGROUND: Spinal cord injury (SCI) induces a multitude of deleterious processes, including neuroinflammation and oxidative stress (OS) which contributed to neuronal damage and demyelination. Recent studies have suggested that increased formation of reactive oxygen species (ROS) and the consequent OS are critical events associated with SCI. However, there is still little information regarding the impact of these events on SCI. Astrocytes are key regulators of oxidative homeostasis in the CNS and astrocytic antioxidant responses promote the clearance of oxidants produced by neurons. Therefore, dysregulation of astrocyte physiology might largely contribute to oxidative damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the main transcriptional regulator of cellular anti-oxidative stress responses. METHODS: In the current study, we hypothesized that astrocytic activation of Nrf2 protects the spinal cord post injury via suppression of neuroinflammation. Thus, using mice line with a GFAP-specific kelch-like ECH-associated protein 1 (Keap1)-deletion, we induced a hyperactivation of Nrf2 in astrocytes and further its effects on SCI outcomes. SCI-induction was performed in mice using the Infinite Horizon Spinal Cord Impactor with a force of 60 kdyn. To assess the quantitative pattern of Nrf2/ARE-activation, we included transgenic ARE-Luc mice. Data were analyzed with GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA). Brown-Forsythe test was performed to test for equal variances and normal distribution was tested with Shapiro-Wilk. RESULTS: In ARE-Luc mice, a significant induction of luciferase-activity was observed as early as 1 day post-injury, indicating a functional role of Nrf2-activity at the epicenter of SCI. Furthermore, SCI induced loss of neurons and oligodendrocytes, demyelination and inflammation in wild type mice. The loss of myelin and oligodendrocytes was clearly reduced in Keap1 KO mice. In addition, Keap-1 KO mice showed a significantly better locomotor function and lower neuroinflammation responses compared to wild type mice. CONCLUSIONS: In summary, our in vivo bioluminescence data showed Nrf2-ARE activation during primary phase of SCI. Furthermore, we found that cell specific hyperactivation of Nrf2 was sufficient to protect the spinal cord against injury which indicate a promising therapeutic approach for SCI-treatment.


Asunto(s)
Enfermedades Desmielinizantes , Traumatismos de la Médula Espinal , Animales , Masculino , Ratones , Astrocitos/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo
6.
Mol Neurobiol ; 58(11): 5907-5919, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34417948

RESUMEN

Lipocalin 2 (LCN2), an immunomodulator, regulates various cellular processes such as iron transport and defense against bacterial infection. Under pathological conditions, LCN2 promotes neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes. Although it seems to have a negative influence on the functional outcome in spinal cord injury (SCI), the extent of its involvement in SCI and the underlying mechanisms are not yet fully known. In this study, using a SCI contusion mouse model, we first investigated the expression pattern of Lcn2 in different parts of the CNS (spinal cord and brain) and in the liver and its concentration in blood serum. Interestingly, we could note a significant increase in LCN2 throughout the whole spinal cord, in the brain, liver, and blood serum. This demonstrates the diversity of its possible sites of action in SCI. Furthermore, genetic deficiency of Lcn2 (Lcn2-/-) significantly reduced certain aspects of gliosis in the SCI-mice. Taken together, our studies provide first valuable hints, suggesting that LCN2 is involved in the local and systemic effects post SCI, and might modulate the impairment of different peripheral organs after injury.


Asunto(s)
Lipocalina 2/fisiología , Enfermedades Neuroinflamatorias/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Gliosis/metabolismo , Lipocalina 2/sangre , Lipocalina 2/deficiencia , Lipocalina 2/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Paraplejía/etiología , Paraplejía/fisiopatología , ARN Mensajero/biosíntesis
7.
Brain Res ; 1763: 147446, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33766517

RESUMEN

The activation of the CXCL12-CXCR4 signaling axis is implicated in the regulation of cell survival, proliferation, and mobilization of bone marrow stem cells into the injured site. We have shown in a previous study that intrathecal administration of CXCL12 reduces spinal cord tissue damage and neuroinflammation and provides functional improvement by reducing inflammasome activity and local inflammatory processes in an experimental spinal cord injury (SCI) rat model. Here, we aimed at investigating whether these neuroprotective effects rely on the control of CXCL12 signaling on microglial activation as microglia cells are known to be the primary immune cells of the brain. LPS induced the expression of the inflammasome components NLRP3, NLRC4 and ASC, the secretion of the cytokines IL-1b and IL-18 and the activation of caspase-1 protease in BV2 cells. Pre-treatment with CXCL12 significantly reduced LPS-induced IL-1b/IL-18 secretion and inflammasome induction. Our results also showed that CXCL12 can suppress caspase-1 activity, which leads to a decrease of SCI-related induction of active IL-1b.


Asunto(s)
Quimiocina CXCL12/farmacología , Inflamasomas/antagonistas & inhibidores , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos , Ratones , Microglía/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores CXCR4/metabolismo
8.
Sci Rep ; 11(1): 6934, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767215

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Enfermedad de Huntington , Neuronas/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Estudios de Casos y Controles , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas , Ratones Endogámicos C57BL , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Ácido gamma-Aminobutírico/metabolismo
9.
J Mol Neurosci ; 71(5): 933-942, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32959226

RESUMEN

The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.


Asunto(s)
Astrocitos/metabolismo , Lipocalina 2/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Encéfalo/citología , Movimiento Celular , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Lipocalina 2/genética , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL
10.
Pharmacol Rep ; 72(3): 641-658, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32048246

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a devastating autoimmune disorder characterized by oligodendrocytes (OLGs) loss and demyelination. In this study, we have examined the effects of metformin (MET) on the oligodendrogenesis, redox signaling, apoptosis, and glial responses during a self-repairing period (1-week) in the animal model of MS. METHODS: For induction of demyelination, C57BL/6 J mice were fed a 0.2% cuprizone (CPZ) for 5 weeks. Thereafter, CPZ was removed for 1-week and molecular and behavioral changes were monitored in the presence or absence of MET (50 mg/kg body weight/day). RESULTS: MET remarkably increased the localization of precursor OLGs (NG2+/O4+ cells) and subsequently the renewal of mature OLGs (MOG+ cells) in the corpus callosum via AMPK/mammalian target of rapamycin (mTOR) pathway. Moreover, we observed a significant elevation in the antioxidant responses, especially in mature OLGs (MOG+/nuclear factor erythroid 2-related factor 2 (Nrf2+) cells) after MET intervention. MET also reduced brain apoptosis markers and lessened motor dysfunction in the open-field test. While MET was unable to decrease active astrogliosis (GFAP mRNA), it reduced microgliosis by down-regulation of Mac-3 mRNA a marker of pro-inflammatory microglia/macrophages. Molecular modeling studies, likewise, confirmed that MET exerts its effects via direct interaction with AMPK. CONCLUSIONS: Altogether, our study reveals that MET effectively induces lesion reduction and elevated molecular processes that support myelin recovery via direct activation of AMPK and indirect regulation of AMPK/Nrf2/mTOR pathway in OLGs. These findings facilitate the development of new therapeutic strategies based on AMPK activation for MS in the near future.


Asunto(s)
Metformina/farmacología , Actividad Motora/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cuerpo Calloso/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Vaina de Mielina/patología , Factor 2 Relacionado con NF-E2/metabolismo , Oligodendroglía/metabolismo , Oxidantes/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Metab Brain Dis ; 35(2): 353-362, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31529356

RESUMEN

Oxidative stress is a pathophysiological hallmark of many CNS diseases, among multiple sclerosis (MS). Accordingly, boosting the astrocytic transcription factor nuclear factor E2-related factor 2 (Nrf2) system in an MS mouse model efficiently ameliorates oligodendrocyte loss, neuroinflammation and axonal damage. Moreover, Dimethylfumarate, an efficient activator of Nrf2, has recently been approved as therapeutic option in MS treatment. Here, we use the cuprizone mouse model of MS to induce oxidative stress, selective oligodendrocyte loss, microglia and astrocyte activation as well as axonal damage in both wild type and Nrf2-deficient mice. We found increased oligodendrocyte apoptosis and loss, pronounced neuroinflammation and higher levels of axonal damage in cuprizone-fed Nrf2-deficient animals when compared to wild type controls. In addition, Nrf2-deficient animals showed a higher susceptibility towards cuprizone within the commissura anterior white matter tract, a structure that is relatively insensitive to cuprizone in wild type animals. Our data highlight the cuprizone model as a suitable tool to study the complex interplay of oxidative stress, neuroinflammation and axonal damage. Further studies will have to show whether distinct expression patterns of Nrf2 are involved in the variable susceptibility towards cuprizone in the mouse.


Asunto(s)
Axones/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Esclerosis Múltiple/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Oligodendroglía/metabolismo , Animales , Axones/efectos de los fármacos , Axones/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/patología , Oligodendroglía/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
12.
Neurochem Int ; 126: 139-153, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30867127

RESUMEN

Brain-intrinsic degenerative cascades are a proposed factor driving inflammatory lesion formation in multiple sclerosis (MS) patients. We recently showed that encephalitogenic lymphocytes are recruited to the sites of active demyelination induced by cuprizone. Here, we investigated whether cuprizone-induced oligodendrocyte and myelin pathology is sufficient to trigger peripheral immune cell recruitment into the forebrain. We show that early cuprizone-induced white matter lesions display a striking similarity to early MS lesions, i.e., oligodendrocyte degeneration, microglia activation and absence of severe lymphocyte infiltration. Such early cuprizone lesions are sufficient to trigger peripheral immune cell recruitment secondary to subsequent EAE (experimental autoimmune encephalomyelitis) induction. The lesions are characterized by discontinuation of the perivascular glia limitans, focal axonal damage, and perivascular astrocyte pathology. Time course studies showed that the severity of cuprizone-induced lesions positively correlates with the extent of peripheral immune cell recruitment. Furthermore, results of genome-wide array analyses suggest that moesin is integral for early microglia activation in cuprizone and MS lesions. This study underpins the significance of brain-intrinsic degenerative cascades for immune cell recruitment and, in consequence, MS lesion formation.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Inmunidad Celular/fisiología , Microglía/inmunología , Oligodendroglía/inmunología , Prosencéfalo/inmunología , Animales , Cuprizona/toxicidad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inmunidad Celular/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Fragmentos de Péptidos/toxicidad , Prosencéfalo/efectos de los fármacos , Prosencéfalo/patología
13.
Int J Mol Sci ; 20(6)2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30871254

RESUMEN

Ischemic stroke causes rapid hypoxic damage to the core neural tissue which is followed by graded chronological tissue degeneration in the peri-infarct zone. The latter process is mainly triggered by neuroinflammation, activation of inflammasomes, proinflammatory cytokines, and pyroptosis. Besides microglia, astrocytes play an important role in the fine-tuning of the inflammatory network in the brain. Lipocalin-2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. In this study, we analyzed LCN2 expression in hypoxic rat brain tissue after ischemic stroke and in astrocyte cell cultures receiving standardized hypoxic treatment. Whereas no LCN2-positive cells were seen in sham animals, the number of LCN2-positive cells (mainly astrocytes) was significantly increased after stroke. In vitro studies with hypoxic cultured astroglia revealed that LCN2 expression is significantly increased after only 2 h, then further increased, followed by a stepwise decline. The expression pattern of several proinflammatory cytokines mainly followed that profile in wild type (WT) but not in cultured LCN2-deficient astrocytes. Our data revealed that astrocytes are an important source of LCN2 in the peri-infarct region under hypoxic conditions. However, we must also stress that brain-intrinsic LCN2 after the initial hypoxia period might come from other sources such as invaded immune cells and peripheral organs via blood circulation. In any case, secreted LCN2 might have an influence on peripheral organ functions and the innate immune system during brain hypoxia.


Asunto(s)
Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Hipoxia/metabolismo , Lipocalina 2/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Inmunidad Innata/fisiología , Inflamación/metabolismo , Masculino , Microglía/metabolismo , Ratas , Ratas Wistar
14.
Glia ; 67(2): 263-276, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30511355

RESUMEN

Oligodendrocytes are integral to efficient neuronal signaling. Loss of myelinating oligodendrocytes is a central feature of many neurological diseases, including multiple sclerosis (MS). The results of neuropathological studies suggest that oligodendrocytes react with differing sensitivity to toxic insults, with some cells dying early during lesion development and some cells being resistant for weeks. This proposed graded vulnerability has never been demonstrated but provides an attractive window for therapeutic interventions. Furthermore, the biochemical pathways associated with graded oligodendrocyte vulnerability have not been well explored. We used immunohistochemistry and serial block-face scanning electron microscopy (3D-SEM) to show that cuprizone-induced metabolic stress results in an "out of phase" degeneration of oligodendrocytes. Although expression induction of stress response transcription factors in oligodendrocytes occurs within days, subsequent oligodendrocyte apoptosis continues for weeks. In line with the idea of an out of phase degeneration of oligodendrocytes, detailed ultrastructural reconstructions of the axon-myelin unit demonstrate demyelination of single internodes. In parallel, genome wide array analyses revealed an active unfolded protein response early after initiation of the cuprizone intoxication. In addition to the cytoprotective pathways, the pro-apoptotic transcription factor DNA damage-inducible transcript 3 (DDIT3) was induced early in oligodendrocytes. In advanced lesions, DDIT3 was as well expressed by activated astrocytes. Toxin-induced oligodendrocyte apoptosis, demyelination, microgliosis, astrocytosis, and acute axonal damage were less intense in the Ddit3-null mutants. This study identifies DDIT3 as an important regulator of graded oligodendrocyte vulnerability in a MS animal model. Interference with this stress cascade might offer a promising therapeutic approach for demyelinating disorders.


Asunto(s)
Enfermedades Desmielinizantes/patología , Regulación de la Expresión Génica/genética , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Factor de Transcripción CHOP/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Astrocitos/patología , Proteínas de Unión al Calcio , Células Cultivadas , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Cuerpo Calloso/ultraestructura , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos , Microscopía Electrónica de Rastreo , Inhibidores de la Monoaminooxidasa/toxicidad , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/ultraestructura , Factor de Transcripción CHOP/genética
15.
J Mol Neurosci ; 67(2): 265-275, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30547416

RESUMEN

Widespread inflammatory lesions within the central nervous system grey and white matter are major hallmarks of multiple sclerosis. The development of full-blown demyelinating multiple sclerosis lesions might be preceded by preactive lesions which are characterized by focal microglia activation in close spatial relation to apoptotic oligodendrocytes. In this study, we investigated the expression of signaling molecules of oligodendrocytes that might be involved in initial microglia activation during preactive lesion formation. Sodium azide was used to trigger mitochondrial impairment and cellular stress in oligodendroglial cells in vitro. Among various chemokines and cytokines, IL6 was identified as a possible oligodendroglial cell-derived signaling molecule in response to cellular stress. Relevance of this finding for lesion development was further explored in the cuprizone model by applying short-term cuprizone feeding (2-4 days) on male C57BL/6 mice and subsequent analysis of gene expression, in situ hybridization and histology. Additionally, we analyzed the possible signaling of stressed oligodendroglial cells in vitro as well as in the cuprizone mouse model. In vitro, conditioned medium of stressed oligodendroglial cells triggered the activation of microglia cells. In cuprizone-fed animals, IL6 expression in oligodendrocytes was found in close vicinity of activated microglia cells. Taken together, our data support the view that stressed oligodendrocytes have the potential to activate microglia cells through a specific cocktail of chemokines and cytokines among IL6. Further studies will have to identify the temporal activation pattern of these signaling molecules, their cellular sources, and impact on neuroinflammation.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Interleucina-6/metabolismo , Mitocondrias/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal , Animales , Línea Celular , Cuprizona/toxicidad , Enfermedades Desmielinizantes/etiología , Interleucina-6/genética , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Mitocondrias/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Ratas , Azida Sódica/toxicidad
16.
J Mol Neurosci ; 66(2): 229-237, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30140996

RESUMEN

Mitochondrial dysfunctions mark a critical step in many central nervous system (CNS) pathologies, including multiple sclerosis (MS). Such dysfunctions lead to depolarization of mitochondrial membranes and imbalanced redox homeostasis. In this context, reactive oxygen species (ROS) are potentially deleterious but can also act as an important signaling step for cellular maintenance. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the key regulator in the cellular oxidative stress-response, induces a battery of genes involved in repair and regeneration. Here, we investigated the relevance of Nrf2 signaling for the prevention of cellular damage caused by dysfunctional mitochondria. We employed sodium azide (SA) as mitochondrial inhibitor on oligodendroglial OliNeu cells in vitro, and the cuprizone model with wild type and GFAP-Cre+::Keap1loxP/loxP mice to induce mitochondrial defects. The importance of Nrf2 for cellular functions and survival after SA treatment was elucidated by in vitro knockdown experiments with shRNA directed against Nrf2 and its inhibitor Keap1 as well as by methysticin treatment. Metabolic activity, cytotoxicity, and depolarization of the mitochondrial membrane were analyzed after SA treatment. The expression of Nrf2 target genes as well as endoplasmic reticulum stress response genes was additionally measured by real-time PCR (in vitro) and PCR gene arrays (in vivo). Treatment of OliNeu cells with SA resulted in significant depolarization of the mitochondrial membrane, decreased metabolic activity, and increased cytotoxicity. This was partly counteracted in Nrf2-hyperactivated cells and intensified in Nrf2-knockdown cells. Our studies demonstrate a key role of Nrf2 in maintaining cellular functions and survival in the context of mitochondrial dysfunction.


Asunto(s)
Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal , Animales , Línea Celular , Células Cultivadas , Inhibidores Enzimáticos/toxicidad , Proteína Ácida Fibrilar de la Glía/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Oligodendroglía/efectos de los fármacos , Azida Sódica/toxicidad
17.
J Neurochem ; 144(3): 285-301, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29210072

RESUMEN

The extent of remyelination in multiple sclerosis lesions is often incomplete. Injury to oligodendrocyte progenitor cells can be a contributing factor for such incomplete remyelination. The precise mechanisms underlying insufficient repair remain to be defined, but oxidative stress appears to be involved. Here, we used immortalized oligodendrocyte cell lines as model systems to investigate a causal relation of oxidative stress and endoplasmic reticulum stress signaling cascades. OLN93 and OliNeu cells were subjected to chemical hypoxia by blocking the respiratory chain at various levels. Mitochondrial membrane potential and oxidative stress levels were quantified by flow cytometry. Endoplasmic reticulum stress was monitored by the expression induction of activating transcription factor 3 and 4 (Atf3, Atf4), DNA damage-inducible transcript 3 protein (Ddit3), and glucose-regulated protein 94. Lentiviral silencing of nuclear factor (erythroid-derived 2)-like 2 or kelch-like ECH-associated protein 1 was applied to study the relevance of NRF2 for endoplasmic reticulum stress responses. We demonstrate that inhibition of the respiratory chain induces oxidative stress in cultured oligodendrocytes which is paralleled by the expression induction of distinct mediators of the endoplasmic reticulum stress response, namely Atf3, Atf4, and Ddit3. Atf3 and Ddit3 expression induction is potentiated in kelch-like ECH-associated protein 1-deficient cells and absent in cells lacking the oxidative stress-related transcription factor NRF2. This study provides strong evidence that oxidative stress in oligodendrocytes activates endoplasmic reticulum stress response in a NRF2-dependent manner and, in consequence, might regulate oligodendrocyte degeneration in multiple sclerosis and other neurological disorders.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 2 Relacionado con NF-E2/metabolismo , Oligodendroglía/metabolismo , Estrés Oxidativo , Factor de Transcripción Activador 3/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Transporte de Electrón , Potencial de la Membrana Mitocondrial , Ratas , Transducción de Señal , Factor de Transcripción CHOP/metabolismo
18.
Mol Neurobiol ; 55(8): 6237-6249, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29288338

RESUMEN

Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. The factors triggering gliosis and demyelination are currently not well characterized. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. Especially during progressive disease, aberrant glia activation rather than the invasion of peripheral immune cells is accountable for progressive neuronal injury. The innate immune response can be induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the Toll-like receptors (TLRs). In this study, we used the cuprizone model in mice to investigate the expression of TLR2 during the course of cuprizone-induced demyelination. In addition, we used TLR2-deficient mice to analyze the functional role of TLR2 activation during cuprizone-induced demyelination and reactive gliosis. We show a significantly increased expression of TLR2 in the corpus callosum and hippocampus of cuprizone-intoxicated mice. The absence of receptor signaling in TLR2-deficient mice resulted in less severe reactive astrogliosis in the corpus callosum and cortex. In addition, microglia activation was ameliorated in the corpus callosum of TLR2-deficient mice, but augmented in the cortex compared to wild-type littermates. Extent of demyelination and loss of mature oligodendrocytes was comparable in both genotypes. These results suggest that the TLR2 orchestrates glia activation during gray and white matter demyelination in the presence of an intact blood-brain barrier. Future studies now have to address the underlying mechanisms of the region-specific TLR2-mediated glia activation.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Neuroglía/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Recuento de Linfocitos , Linfocitos/patología , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética
19.
Glia ; 65(12): 1900-1913, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28836302

RESUMEN

Brain-intrinsic degenerative cascades are a proposed factor driving inflammatory lesion formation in multiple sclerosis (MS) patients. We recently described a model combining noninflammatory cytodegeneration (via cuprizone) with the classic active experimental autoimmune encephalomyelitis (Cup/EAE model), which exhibits inflammatory forebrain lesions. Here, we describe the histopathological characteristics and progression of these Cup/EAE lesions. We show that inflammatory lesions develop at various topographical sites in the forebrain, including white matter tracts and cortical and subcortical grey matter areas. The lesions are characterized by focal demyelination, discontinuation of the perivascular glia limitans, focal axonal damage, and neutrophil granulocyte extravasation. Transgenic mice with enhanced green fluorescent protein-expressing microglia and red fluorescent protein-expressing monocytes reveal that both myeloid cell populations contribute to forebrain inflammatory infiltrates. EAE-triggered inflammatory cerebellar lesions were augmented in mice pre-intoxicated with cuprizone. Gene expression studies suggest roles of the chemokines Cxcl10, Ccl2, and Ccl3 in inflammatory lesion formation. Finally, follow-up experiments in Cup/EAE mice with chronic disease revealed that forebrain, but not spinal cord, lesions undergo spontaneous reorganization and repair. This study underpins the significance of brain-intrinsic degenerative cascades for immune cell recruitment and, in consequence, MS lesion formation.


Asunto(s)
Progresión de la Enfermedad , Encefalitis/etiología , Encefalitis/patología , Encefalomielitis Autoinmune Experimental/complicaciones , Sesquiterpenos/toxicidad , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Encefalitis/genética , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Adyuvante de Freund/toxicidad , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Microglía/ultraestructura , Monocitos/patología , Monocitos/ultraestructura , Glicoproteína Mielina-Oligodendrócito/inmunología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/toxicidad , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo
20.
J Mol Neurosci ; 62(2): 232-243, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28466255

RESUMEN

Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. Unclear are the factors triggering gliosis and demyelination. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. The innate immune response is induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the G-protein coupled with formyl peptide receptors (FPRs). Glial cells, the immune cells of the central nervous system, also express the PRRs. In this study, we used the cuprizone mice model to investigate the expression of the FPR1 in the course of cuprizone-induced demyelination In addition, we used FPR1-deficient mice to analyze glial cell activation through immunohistochemistry and real-time RT-PCR in cuprizone model. Our results revealed a significantly increased expression of FPR1 in the cortex of cuprizone-treated mice. FPR1-deficient mice showed a slight but significant decrease of demyelination in the corpus callosum compared to the wild-type mice. Furthermore, FPR1 deficiency resulted in reduced glial cell activation and mRNA expression of microglia/macrophages markers, as well as pro- and anti-inflammatory cytokines in the cortex, compared to wild-type mice after cuprizone-induced demyelination. Combined together, these results suggest that the FPR1 is an important part of the innate immune response in the course of cuprizone-induced demyelination.


Asunto(s)
Enfermedades Desmielinizantes/inmunología , Neuroglía/inmunología , Receptores de Formil Péptido/metabolismo , Animales , Cuerpo Calloso/inmunología , Cuerpo Calloso/patología , Cuprizona/toxicidad , Citocinas/genética , Citocinas/metabolismo , Enfermedades Desmielinizantes/etiología , Inmunidad Innata , Activación de Macrófagos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Formil Péptido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...