Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Med ; 14(2): e1554, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38344872

RESUMEN

BACKGROUND: Luminal A tumours generally have a favourable prognosis but possess the highest 10-year recurrence risk among breast cancers. Additionally, a quarter of the recurrence cases occur within 5 years post-diagnosis. Identifying such patients is crucial as long-term relapsers could benefit from extended hormone therapy, while early relapsers might require more aggressive treatment. METHODS: We conducted a study to explore non-structural chromosome maintenance condensin I complex subunit H's (NCAPH) role in luminal A breast cancer pathogenesis, both in vitro and in vivo, aiming to identify an intratumoural gene expression signature, with a focus on elevated NCAPH levels, as a potential marker for unfavourable progression. Our analysis included transgenic mouse models overexpressing NCAPH and a genetically diverse mouse cohort generated by backcrossing. A least absolute shrinkage and selection operator (LASSO) multivariate regression analysis was performed on transcripts associated with elevated intratumoural NCAPH levels. RESULTS: We found that NCAPH contributes to adverse luminal A breast cancer progression. The intratumoural gene expression signature associated with elevated NCAPH levels emerged as a potential risk identifier. Transgenic mice overexpressing NCAPH developed breast tumours with extended latency, and in Mouse Mammary Tumor Virus (MMTV)-NCAPHErbB2 double-transgenic mice, luminal tumours showed increased aggressiveness. High intratumoural Ncaph levels correlated with worse breast cancer outcome and subpar chemotherapy response. A 10-gene risk score, termed Gene Signature for Luminal A 10 (GSLA10), was derived from the LASSO analysis, correlating with adverse luminal A breast cancer progression. CONCLUSIONS: The GSLA10 signature outperformed the Oncotype DX signature in discerning tumours with unfavourable outcomes, previously categorised as luminal A by Prediction Analysis of Microarray 50 (PAM50) across three independent human cohorts. This new signature holds promise for identifying luminal A tumour patients with adverse prognosis, aiding in the development of personalised treatment strategies to significantly improve patient outcomes.


Asunto(s)
Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Perfilación de la Expresión Génica , Pronóstico , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética
2.
Res Sq ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37886490

RESUMEN

Despite their generally favorable prognosis, luminal A tumors paradoxically pose the highest ten-year recurrence risk among breast cancers. From those that relapse, a quarter of them do it within five years after diagnosis. Identifying such patients is crucial, as long-term relapsers could benefit from extended hormone therapy, whereas early relapsers may require aggressive treatment. In this study, we demonstrate that NCAPH plays a role in the pathogenesis of luminal A breast cancer, contributing to its adverse progression in vitro and in vivo. Furthermore, we reveal that a signature of intratumoral gene expression, associated with elevated levels of NCAPH, serves as a potential marker to identify patients facing unfavorable progression of luminal A breast cancer. Indeed, transgenic mice overexpressing NCAPH generated breast tumors with long latency, and in MMTV-NCAPH/ErbB2+ double-transgenic mice, the luminal tumors formed were more aggressive. In addition, high intratumoral levels of Ncaph were associated with worse breast cancer evolution and poor response to chemotherapy in a cohort of genetically heterogeneous transgenic mice generated by backcrossing. In this cohort of mice, we identified a series of transcripts associated with elevated intratumoral levels of NCAPH, which were linked to adverse progression of breast cancer in both mice and humans. Utilizing the Least Absolute Shrinkage and Selection Operator (LASSO) multivariate regression analysis on this series of transcripts, we derived a ten-gene risk score. This score is defined by a gene signature (termed Gene Signature for Luminal A 10 or GSLA10) that correlates with unfavorable progression of luminal A breast cancer. The GSLA10 signature surpassed the Oncotype DX signature in discerning tumors with unfavorable outcomes (previously categorized as Luminal A by PAM50) across three independent human cohorts. This GSLA10 signature aids in identifying patients with Luminal A tumors displaying adverse prognosis, who could potentially benefit from personalized treatment strategies.

3.
Cancer Res ; 80(23): 5216-5230, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33023950

RESUMEN

SNAI2 overexpression appears to be associated with poor prognosis in breast cancer, yet it remains unclear in which breast cancer subtypes this occurs. Here we show that excess SNAI2 is associated with a poor prognosis of luminal B HER2+/ERBB2+ breast cancers in which SNAI2 expression in the stroma but not the epithelium correlates with tumor proliferation. To determine how stromal SNAI2 might influence HER2+ tumor behavior, Snai2-deficient mice were crossed with a mouse line carrying the ErbB2/Neu protooncogene to generate HER2+/ERBB2+ breast cancer. Tumors generated in this model expressed SNAI2 in the stroma but not the epithelium, allowing for the role of stromal SNAI2 to be studied without interference from the epithelial compartment. The absence of SNAI2 in the stroma of HER2+/ERBB2+ tumors is associated with: (i) lower levels of cyclin D1 (CCND1) and reduced tumor epithelium proliferation; (ii) higher levels of AKT and a lower incidence of metastasis; (iii) lower levels of angiopoietin-2 (ANGPT2), and more necrosis. Together, these results indicate that the loss of SNAI2 in cancer-associated fibroblasts limits the production of some cytokines, which influences AKT/ERK tumor signaling and subsequent proliferative and metastatic capacity of ERBB2+ breast cancer cells. Accordingly, SNAI2 expression in the stroma enhanced the tumorigenicity of luminal B HER2+/ERBB2+ breast cancers. This work emphasizes the importance of stromal SNAI2 in breast cancer progression and patients' prognosis. SIGNIFICANCE: Stromal SNAI2 expression enhances the tumorigenicity of luminal B HER2+ breast cancers and can identify a subset of patients with poor prognosis, making SNAI2 a potential therapeutic target for this disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/23/5216/F1.large.jpg.


Asunto(s)
Neoplasias de la Mama/patología , Receptor ErbB-2/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Células del Estroma/patología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Noqueados , Receptor ErbB-2/genética , Factores de Transcripción de la Familia Snail/genética , Células del Estroma/metabolismo , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...