Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 678: 411-440, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36641216

RESUMEN

Constructing a comprehensive understanding of macromolecular behavior from a set of correlated small angle scattering (SAS) data is aided by tools that analyze all scattering curves together. SAS experiments on biological systems can be performed on specimens that are more easily prepared, modified, and formatted relative to those of most other techniques. An X-ray SAS measurement (SAXS) can be performed in less than a milli-second in-line with treatment steps such as purification or exposure to modifiers. These capabilities are valuable since biological macromolecules (proteins, polynucleotides, lipids, and carbohydrates) change conformation or assembly under specific conditions that often define their biological role. Furthermore, mutation or post-translational modification change their behavior and provides an avenue to tailor their mechanics. Here, we describe tools to combine multiple correlated SAS measurements for analysis and review their application to biological systems. The SAXS Similarity Map (SSM) compares a set of scattering curves and quantifies the similarity between them for display as a color on a grid. Visualizing an entire correlated data set with SSMs helps identify patterns that reveal biological functions. The SSM analysis is available as a web-based tool at https://sibyls.als.lbl.gov/saxs-similarity/. To make data available and promote tool development, we have also deployed a repository of correlated SAS data sets called Simple Scattering (available at https://simplescattering.com). The correlated data sets used to demonstrate the SSM are available on the Simple Scattering website. We expect increased utilization of correlated SAS measurements to characterize the tightly controlled mechanistic properties of biological systems and fine-tune engineered macromolecules for nanotechnology-based applications.


Asunto(s)
Proteínas , Difracción de Rayos X , Dispersión del Ángulo Pequeño , Conformación Molecular , Sustancias Macromoleculares
2.
Biochemistry ; 57(45): 6434-6442, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30358994

RESUMEN

The malarial pathogen Plasmodium falciparum ( Pf) is a member of the Apicomplexa, which independently evolved a highly specific lactate dehydrogenase (LDH) from an ancestral malate dehydrogenase (MDH) via a five-residue insertion in a key active site loop. PfLDH is widely considered an attractive drug target because of its unique active site. The conservation of the apicomplexan loop suggests that a precise insertion sequence was required for the evolution of LDH specificity. Aside from a single critical tryptophan, W107f, the functional and structural roles of residues in the loop are currently unknown. Here we show that the loop is remarkably robust to mutation, as activity is resilient to radical perturbations of both loop identity and length. Thus, alternative insertions could have evolved LDH specificity as long as they contained a tryptophan in the proper location. PfLDH likely has great potential to develop resistance to drugs designed to target its distinctive active site loop.


Asunto(s)
L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo , Plasmodium falciparum/enzimología , Conformación Proteica , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , L-Lactato Deshidrogenasa/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Filogenia , Homología de Secuencia
4.
FEBS J ; 281(18): 4046-60, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25040949

RESUMEN

UNLABELLED: In macromolecular crystallography, the agreement between observed and predicted structure factors (Rcryst and Rfree ) is seldom better than 20%. This is much larger than the estimate of experimental error (Rmerge ). The difference between Rcryst and Rmerge is the R-factor gap. There is no such gap in small-molecule crystallography, for which calculated structure factors are generally considered more accurate than the experimental measurements. Perhaps the true noise level of macromolecular data is higher than expected? Or is the gap caused by inaccurate phases that trap refined models in local minima? By generating simulated diffraction patterns using the program MLFSOM, and including every conceivable source of experimental error, we show that neither is the case. Processing our simulated data yielded values that were indistinguishable from those of real data for all crystallographic statistics except the final Rcryst and Rfree . These values decreased to 3.8% and 5.5% for simulated data, suggesting that the reason for high R-factors in macromolecular crystallography is neither experimental error nor phase bias, but rather an underlying inadequacy in the models used to explain our observations. The present inability to accurately represent the entire macromolecule with both its flexibility and its protein-solvent interface may be improved by synergies between small-angle X-ray scattering, computational chemistry and crystallography. The exciting implication of our finding is that macromolecular data contain substantial hidden and untapped potential to resolve ambiguities in the true nature of the nanoscale, a task that the second century of crystallography promises to fulfill. DATABASE: Coordinates and structure factors for the real data have been submitted to the Protein Data Bank under accession 4tws.


Asunto(s)
Sustancias Macromoleculares/química , Modelos Moleculares , Simulación por Computador , Cristalografía por Rayos X , Conformación Proteica , Proteínas/química , Programas Informáticos , Homología Estructural de Proteína
5.
Elife ; 32014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24966208

RESUMEN

Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.


Asunto(s)
Apicomplexa/enzimología , Evolución Molecular , L-Lactato Deshidrogenasa/química , Dominio Catalítico , Cryptosporidium parvum/enzimología , Epistasis Genética , Escherichia coli/metabolismo , Malato Deshidrogenasa/química , Mutación , Filogenia , Plasmodium falciparum/enzimología , Unión Proteica , Conformación Proteica , Rickettsia/enzimología , Toxoplasma/enzimología , Triptófano/química
6.
EMBO J ; 33(5): 482-500, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24493214

RESUMEN

The Mre11-Rad50 complex is highly conserved, yet the mechanisms by which Rad50 ATP-driven states regulate the sensing, processing and signaling of DNA double-strand breaks are largely unknown. Here we design structure-based mutations in Pyrococcus furiosus Rad50 to alter protein core plasticity and residues undergoing ATP-driven movements within the catalytic domains. With this strategy we identify Rad50 separation-of-function mutants that either promote or destabilize the ATP-bound state. Crystal structures, X-ray scattering, biochemical assays, and functional analyses of mutant PfRad50 complexes show that the ATP-induced 'closed' conformation promotes DNA end binding and end tethering, while hydrolysis-induced opening is essential for DNA resection. Reducing the stability of the ATP-bound state impairs DNA repair and Tel1 (ATM) checkpoint signaling in Schizosaccharomyces pombe, double-strand break resection in Saccharomyces cerevisiae, and ATM activation by human Mre11-Rad50-Nbs1 in vitro, supporting the generality of the P. furiosus Rad50 structure-based mutational analyses. These collective results suggest that ATP-dependent Rad50 conformations switch the Mre11-Rad50 complex between DNA tethering, ATM signaling, and 5' strand resection, revealing molecular mechanisms regulating responses to DNA double-strand breaks.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Pyrococcus furiosus/metabolismo , Ciclo Celular , Cristalografía por Rayos X , Análisis Mutacional de ADN , Enzimas Reparadoras del ADN/genética , Hidrólisis , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Pyrococcus furiosus/genética , Pyrococcus furiosus/crecimiento & desarrollo , Pyrococcus furiosus/fisiología , Transducción de Señal , Difracción de Rayos X
7.
Methods Mol Biol ; 1091: 245-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24203338

RESUMEN

The recent innovation of collecting X-ray scattering from solutions containing purified macromolecules in high-throughput has yet to be truly exploited by the biological community. Yet, this capability is becoming critical given that the growth of sequence and genomics data is significantly outpacing structural biology results. Given the huge mismatch in information growth rates between sequence and structural methods, their combined high-throughput and high success rate make high-throughput small angle X-ray scattering (HT-SAXS) analyses increasingly valuable. HT-SAXS connects sequence as well as NMR and crystallographic results to biological outcomes by defining the flexible and dynamic complexes controlling cell biology. Commonly falling under the umbrella of bio-SAXS, HT-SAXS data collection pipelines have or are being developed at most synchrotrons. How investigators practically get their biomolecules of interest into these pipelines, balance sample requirements and manage HT-SAXS data output format varies from facility to facility. While these features are unlikely to be standardized across synchrotron beamlines, a detailed description of HT-SAXS issues for one pipeline provides investigators with a practical guide to the general procedures they will encounter. One of the longest running and generally accessible HT-SAXS endstations is the SIBYLS beamline at the Advanced Light Source in Berkeley CA. Here we describe the current state of the SIBYLS HT-SAXS pipeline, what is necessary for investigators to integrate into it, the output format and a summary of results from 2 years of operation. Assessment of accumulated data informs issues of concentration, background, buffers, sample handling, sample shipping, homogeneity requirements, error sources, aggregation, radiation sensitivity, interpretation, and flags for concern. By quantitatively examining success and failures as a function of sample and data characteristics, we define practical concerns, considerations, and concepts for optimally applying HT-SAXS techniques to biological samples.


Asunto(s)
Sustancias Macromoleculares/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Tampones (Química) , Calibración , Soluciones , Temperatura , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodos
8.
J Appl Crystallogr ; 46(Pt 1): 1-13, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23396808

RESUMEN

The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources.

9.
Subcell Biochem ; 62: 301-26, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22918592

RESUMEN

Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5'-flaps with exquisite specificity. FENs are paradigms for the 5' nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5' nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication.


Asunto(s)
Replicación del ADN/fisiología , ADN/biosíntesis , ADN/química , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/metabolismo , Animales , ADN/genética , ADN/metabolismo , ADN Ligasas/química , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN Polimerasa III/química , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Endonucleasas de ADN Solapado/genética , Humanos , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Relación Estructura-Actividad
10.
Nat Struct Mol Biol ; 19(6): 653-6, 2012 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-22609859

RESUMEN

Reversible post-translational modification by poly(ADP-ribose) (PAR) regulates chromatin structure, DNA repair and cell fate in response to genotoxic stress. PAR glycohydrolase (PARG) removes PAR chains from poly ADP-ribosylated proteins to restore protein function and release oligo(ADP-ribose) chains to signal damage. Here we report crystal structures of mammalian PARG and its complex with a substrate mimic that reveal an open substrate-binding site and a unique 'tyrosine clasp' enabling endoglycosidic cleavage of branched PAR chains.


Asunto(s)
Glicósido Hidrolasas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Glicósido Hidrolasas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Ratas , Alineación de Secuencia
11.
J Biol Chem ; 286(37): 32638-50, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21775435

RESUMEN

The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational analyses to define the XLF-XRCC4 interactions. Crystal and solution structures plus mutations characterize alternating XRCC4 and XLF head domain interfaces forming parallel super-helical filaments. XLF Leu-115 ("Leu-lock") inserts into a hydrophobic pocket formed by XRCC4 Met-59, Met-61, Lys-65, Lys-99, Phe-106, and Leu-108 in synergy with pseudo-symmetric ß-zipper hydrogen bonds to drive specificity. XLF C terminus and DNA enhance parallel filament formation. Super-helical XLF-XRCC4 filaments form a positively charged channel to bind DNA and align ends for efficient ligation. Collective results reveal how human XLF and XRCC4 interact to bind DNA, suggest consequences of patient mutations, and support a unified molecular mechanism for XLF-XRCC4 stimulation of DNA ligation.


Asunto(s)
Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Línea Celular , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Unión Proteica/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
12.
Cell ; 145(2): 198-211, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21496641

RESUMEN

Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1:DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100° with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity.


Asunto(s)
Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , ADN/metabolismo , Análisis Mutacional de ADN , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Especificidad por Sustrato
13.
J Synchrotron Radiat ; 17(6): 774-81, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20975223

RESUMEN

Biological small-angle X-ray scattering (SAXS) provides powerful complementary data for macromolecular crystallography (MX) by defining shape, conformation and assembly in solution. Although SAXS is in principle the highest throughput technique for structural biology, data collection is limited in practice by current data collection software. Here the adaption of beamline control software, historically developed for MX beamlines, for the efficient operation and high-throughput data collection at synchrotron SAXS beamlines is reported. The Blu-Ice GUI and Distributed Control System (DCS) developed in the Macromolecular Crystallography Group at the Stanford Synchrotron Radiation Laboratory has been optimized, extended and enhanced to suit the specific needs of the biological SAXS endstation at the SIBYLS beamline at the Advanced Light Source. The customizations reported here provide a potential route for other SAXS beamlines in need of robust and efficient beamline control software. As a great deal of effort and optimization has gone into crystallographic software, the adaption and extension of crystallographic software may prove to be a general strategy to provide advanced SAXS software for the synchrotron community. In this way effort can be put into optimizing features for SAXS rather than reproducing those that have already been successfully implemented for the crystallographic community.


Asunto(s)
Cristalografía por Rayos X/métodos , Dispersión del Ángulo Pequeño , Programas Informáticos , Sincrotrones
14.
Cell ; 139(1): 87-99, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19804755

RESUMEN

The Nijmegen breakage syndrome 1 (Nbs1) subunit of the Mre11-Rad50-Nbs1 (MRN) complex protects genome integrity by coordinating double-strand break (DSB) repair and checkpoint signaling through undefined interactions with ATM, MDC1, and Sae2/Ctp1/CtIP. Here, fission yeast and human Nbs1 structures defined by X-ray crystallography and small angle X-ray scattering (SAXS) reveal Nbs1 cardinal features: fused, extended, FHA-BRCT(1)-BRCT(2) domains flexibly linked to C-terminal Mre11- and ATM-binding motifs. Genetic, biochemical, and structural analyses of an Nbs1-Ctp1 complex show Nbs1 recruits phosphorylated Ctp1 to DSBs via binding of the Nbs1 FHA domain to a Ctp1 pThr-Asp motif. Nbs1 structures further identify an extensive FHA-BRCT interface, a bipartite MDC1-binding scaffold, an extended conformational switch, and the molecular consequences associated with cancer predisposing Nijmegen breakage syndrome mutations. Tethering of Ctp1 to a flexible Nbs1 arm suggests a mechanism for restricting DNA end processing and homologous recombination activities of Sae2/Ctp1/CtIP to the immediate vicinity of DSBs.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Reparación del ADN , Proteínas Nucleares/química , Proteínas de Schizosaccharomyces pombe/química , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11 , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Nat Methods ; 6(8): 606-12, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19620974

RESUMEN

We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.


Asunto(s)
Proteínas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Proteínas Bacterianas/química , Diseño de Equipo , Modelos Moleculares , Conformación Proteica , Pyrococcus furiosus/metabolismo , Difracción de Rayos X/instrumentación
16.
Mol Cell ; 24(2): 279-91, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-17052461

RESUMEN

DNA sliding clamps encircle DNA and provide binding sites for many DNA-processing enzymes. However, it is largely unknown how sliding clamps like proliferating cell nuclear antigen (PCNA) coordinate multistep DNA transactions. We have determined structures of Sulfolobus solfataricus DNA ligase and heterotrimeric PCNA separately by X-ray diffraction and in complex by small-angle X-ray scattering (SAXS). Three distinct PCNA subunits assemble into a protein ring resembling the homotrimeric PCNA of humans but with three unique protein-binding sites. In the absence of nicked DNA, the Sulfolobus solfataricus DNA ligase has an open, extended conformation. When complexed with heterotrimeric PCNA, the DNA ligase binds to the PCNA3 subunit and ligase retains an open, extended conformation. A closed, ring-shaped conformation of ligase catalyzes a DNA end-joining reaction that is strongly stimulated by PCNA. This open-to-closed switch in the conformation of DNA ligase is accommodated by a malleable interface with PCNA that serves as an efficient platform for DNA ligation.


Asunto(s)
ADN Ligasas/química , ADN/química , Antígeno Nuclear de Célula en Proliferación/química , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/enzimología , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Sulfolobus solfataricus/enzimología , Difracción de Rayos X
17.
J Am Chem Soc ; 128(10): 3142-3, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16522084

RESUMEN

The unprecedented economies of scale and unique mass transport properties of microfluidic devices made them viable nano-volume protein crystallization screening platforms. However, realizing the full potential of microfluidic crystallization requires complementary technologies for crystal optimization and harvesting. In this paper, we report a microfluidic device which provides a link between chip-based nanoliter volume crystallization screening and structure analysis through "kinetic optimization" of crystallization reactions and in situ structure determination. Kinetic optimization through systematic variation of reactor geometry and actuation of micromechanical valves is used to screen a large ensemble of kinetic trajectories that are not practical with conventional techniques. Using this device, we demonstrate control over crystal quality, reliable scale-up from nanoliter volume reactions, facile harvesting and cryoprotectant screening, and protein structure determination at atomic resolution from data collected in-chip.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Proteínas/química , Isomerasas Aldosa-Cetosa/química , Catalasa/química , Cristalización , Cinética , Técnicas Analíticas Microfluídicas/métodos , Estructura Molecular , Muramidasa/química , Péptidos/química , Proteínas de Plantas/química , Difracción de Rayos X
18.
Proc Natl Acad Sci U S A ; 100(19): 10629-34, 2003 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-12963818

RESUMEN

Type IIA topoisomerases both manage the topological state of chromosomal DNA and are the targets of a variety of clinical agents. Bisdioxopiperazines are anticancer agents that associate with ATP-bound eukaryotic topoisomerase II (topo II) and convert the enzyme into an inactive, salt-stable clamp around DNA. To better understand both topo II and bisdioxopiperazine function, we determined the structures of the adenosine 5'-[beta,gamma-imino]-triphosphate-bound yeast topo II ATPase region (ScT2-ATPase) alone and complexed with the bisdioxopiperazine ICRF-187. The drug-free form of the protein is similar in overall fold to the equivalent region of bacterial gyrase but unexpectedly displays significant conformational differences. The ternary drug-bound complex reveals that ICRF-187 acts by an unusual mechanism of inhibition in which the drug does not compete for the ATP-binding pocket, but bridges and stabilizes a transient dimer interface between two ATPase protomers. Our data explain why bisdioxopiperazines target ATP-bound topo II, provide a structural rationale for the effects of certain drug-resistance mutations, and point to regions of bisdioxopiperazines that might be modified to improve or alter drug specificity.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Razoxano/farmacología , Inhibidores de Topoisomerasa II , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Modelos Moleculares , Conformación Proteica
19.
Biochemistry ; 42(31): 9269-77, 2003 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-12899613

RESUMEN

Oxytricha nova telomere end binding protein (OnTEBP) specifically recognizes and caps single-strand (T(4)G(4))(2) telomeric DNA at the very 3'-ends of O. nova macronuclear chromosomes. The discovery of proteins homologous to the N-terminal domain of the OnTEBP alpha subunit in Euplotes crassus, Schizosaccharomyces pombe, and Homo sapiens suggests that related proteins are widely distributed in eukaryotes. Previously reported crystal structures of the ssDNA binding domain of the OnTEBP alpha subunit both uncomplexed and complexed with telomeric ssDNA have suggested specific mechanisms for sequence-specific and 3'-end selective recognition of the single-strand telomeric DNA. We now describe comparative binding studies of ssDNA recognition by the N-terminal domain of the OnTEBP alpha subunit. Addition of nucleotides to the 3'-end of the TTTTGGGG telomere repeat decreases the level of alpha binding by up to 7-fold, revealing a modest specificity for a 3'-terminus relative to an internal DNA binding site. Nucleotide substitutions at specific positions within the t(1)t(2)t(3)T(4)G(5)G(6)G(7)G(8) repeat show that base substitutions at some sites do not substantially decrease the binding affinity (<2-fold for lowercase letters), while substitutions at other sites dramatically reduce the binding affinity (>20-fold decrease for the uppercase bold letter). Comparison of the structural and binding data provides unique insights into the ways in which proteins recognize and bind single-stranded DNA.


Asunto(s)
ADN de Cadena Simple/metabolismo , Oxytricha , Proteínas Protozoarias/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Animales , Sitios de Unión , Cristalografía por Rayos X , ADN Protozoario/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Dimerización , Ensayo de Cambio de Movilidad Electroforética , Oxytricha/química , Oxytricha/genética , Conformación Proteica , Subunidades de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Especificidad por Sustrato , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...