Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 11(1): 82, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198698

RESUMEN

Aging is the main risk factor for Alzheimer's disease (AD) and other neurodegenerative pathologies, but the molecular and cellular changes underlying pathological aging of the nervous system are poorly understood. AD pathology seems to correlate with the appearance of cells that become senescent due to the progressive accumulation of cellular insults causing DNA damage. Senescence has also been shown to reduce the autophagic flux, a mechanism involved in clearing damaged proteins from the cell, and such impairment has been linked to AD pathogenesis. In this study, we investigated the role of cellular senescence on AD pathology by crossing a mouse model of AD-like amyloid-ß (Aß) pathology (5xFAD) with a mouse model of senescence that is genetically deficient for the RNA component of the telomerase (Terc-/-). We studied changes in amyloid pathology, neurodegeneration, and the autophagy process in brain tissue samples and primary cultures derived from these mice by complementary biochemical and immunostaining approaches. Postmortem human brain samples were also processed to evaluate autophagy defects in AD patients. Our results show that accelerated senescence produces an early accumulation of intraneuronal Aß in the subiculum and cortical layer V of 5xFAD mice. This correlates with a reduction in amyloid plaques and Aß levels in connecting brain regions at a later disease stage. Neuronal loss was specifically observed in brain regions presenting intraneuronal Aß and was linked to telomere attrition. Our results indicate that senescence affects intraneuronal Aß accumulation by impairing autophagy function and that early autophagy defects can be found in the brains of AD patients. Together, these findings demonstrate the instrumental role of senescence in intraneuronal Aß accumulation, which represents a key event in AD pathophysiology, and emphasize the correlation between the initial stages of amyloid pathology and defects in the autophagy flux.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Humanos , Ratones , Animales , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Autofagia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
Mol Biomed ; 2(1): 32, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35006465

RESUMEN

The vast majority of adult cancer cells achieve cellular immortality by activating a telomere maintenance mechanism (TMM). While this is mostly achieved by the de-silencing of hTERT telomerase gene expression, an alternative homologous recombination-based and telomerase-independent mechanism, known as ALT (Alternative Lengthening of Telomeres), is frequently activated in a subset of tumors, including paediatric cancers. Being absent from normal cells, the ALT mechanism offers interesting perspectives for new targeted cancer therapies. To date, however, the development of better translationally applicable tools for ALT detection in tumor sections is still needed. Here, using a newly derived ALT-positive cancer cell mouse xenograft model, we extensively examined how the previously known ALT markers could be used as reliable tools for ALT diagnosis in tumor sections. We found that, together with the detection of ultra-bright telomeric signals (UBS), an ALT hallmark, native telomeric FISH, that detects single-stranded C-rich telomeric DNA, provides a very sensitive and robust tool for ALT diagnosis in tissues. We applied these assays to paediatric tumor samples and readily identified three ALT-positive tumors for which the TMM was confirmed by the gold-standard C-circle amplification assay. Although the latter offers a robust assay for ALT detection in the context of research laboratories, it is more difficult to set up in histopathological laboratories and could therefore be conveniently replaced by the combination of UBS detection and native telomeric FISH.

3.
Curr Opin Genet Dev ; 60: 1-8, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32114293

RESUMEN

Cancer cells acquire replicative immortality by activating a telomere maintenance mechanism (TMM), either the telomerase or the Alternative Lengthening of Telomeres (ALT) mechanism. ALT is frequently activated in tumors derived from mesenchymal cells, which are more frequent in childhood cancers. Recent studies showed that, occasionally, cancer cells can arise without any TMM activation. Here, we discuss the challenge in assessing which TMM is activated in tumors. We also evaluate the prevalence of ALT mechanism in pediatric cancers and review the associated survival prognosis in different tumor types. Finally, we discuss about possible anti-TMM therapies for new emerging cancer treatments.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias/genética , Neoplasias/patología , Telomerasa/metabolismo , Homeostasis del Telómero , Telómero , Transformación Celular Neoplásica/genética , Humanos , Neoplasias/enzimología , Telomerasa/genética
4.
Mol Cell Oncol ; 6(6): e1651603, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31692925

RESUMEN

Some tumors acquire replicative immortality by activating an ALTernative telomerase-independent telomere maintenance mechanism. ALT offers interesting therapeutic perspectives but lacks any known specific targets. We discovered a crucial role for TSPYL5 (Testis-Specific Y-encoded-Like Protein 5) in keeping ALT cell viability by protecting POT1 (Protection Of Telomeres 1) from proteasomal degradation.

5.
Mol Cell ; 75(3): 469-482.e6, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31278054

RESUMEN

A significant fraction (∼10%) of cancer cells maintain their telomere length via a telomerase-independent mechanism known as alternative lengthening of telomeres (ALT). There are no known molecular, ALT-specific, therapeutic targets. We have identified TSPYL5 (testis-specific Y-encoded-like protein 5) as a PML body component, co-localizing with ALT telomeres and critical for ALT+ cell viability. TSPYL5 was described as an inhibitor of the USP7 deubiquitinase. We report that TSPYL5 prevents the poly-ubiquitination of POT1-a shelterin component-and protects POT1 from proteasomal degradation exclusively in ALT+ cells. USP7 depletion rescued POT1 poly-ubiquitination and loss, suggesting that the deubiquitinase activates POT1 E3 ubiquitin ligase(s). Similarly, PML depletion suppressed POT1 poly-ubiquitination, suggesting an interplay between USP7 and PML to trigger POT1 degradation in TSPYL5-depleted ALT+ cells. We demonstrate that ALT telomeres need to be protected from POT1 degradation in ALT-associated PML bodies and identify TSPYL5 as an ALT+ cancer-specific therapeutic target.


Asunto(s)
Neoplasias/genética , Proteínas Nucleares/genética , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/genética , Peptidasa Específica de Ubiquitina 7/genética , Línea Celular , Supervivencia Celular/genética , Humanos , Neoplasias/patología , Proteína de la Leucemia Promielocítica/genética , Unión Proteica/genética , Proteolisis , Complejo Shelterina , Telómero/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA